• Title/Summary/Keyword: 2-metric spaces

Search Result 159, Processing Time 0.019 seconds

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Deshpande, Bhavana;Handa, Amrish;Thoker, Shamim Ahmad
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.333-354
    • /
    • 2016
  • We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

AN EMBEDDING THEOREM FOR NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han;Kim, Mi-Hye
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.517-523
    • /
    • 1998
  • In this paper we prove that a normed almost linear space \hat{X} can be embedded in a normed linear space X when a normed almost linear space X has a basis and splits as X=V+W. Also we have a metric induced by a norm on a normed almost linear space as a corollary.

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED GERAGHTY-TYPE CONTRACTION WITH APPLICATION

  • Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.109-124
    • /
    • 2020
  • We establish coincidence point theorem for S-non-decreasing mappings under Geraghty-type contraction on partially ordered metric spaces. With the help of obtain result, we derive two dimensional results for generalized compatible pair of mappings F, G : X2 → X. As an application, we obtain the solution of integral equation and also give an example to show the usefulness of our results. Our results improve, sharpen, enrich and generalize various known results.

SOME THEOREMS ON RECURRENT FINSLER SPACES BY THE PROJECTIVE CHANGE

  • Kim, Byung-Doo;Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.337-344
    • /
    • 1999
  • If any geodesic on $F^n$ is also a geodesic on $\={F}^n$ and the inverse is true, the change $\sigma:L{\rightarrow}\={L}$ of the metric is called projective. In this paper, we will find the condition that a recurrent Finsler space remains to be a recurrent one under the projective change.

  • PDF

COMMON FIXED POINTS OF $\Phi$-CONTRACTIVE MAPPINGS

  • Kim, Kang-Hak;Kang, Shin-Min;Cho, Yeol-Je
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.211-222
    • /
    • 1999
  • In this paper, we give some common fixed point theorems for compatible mappings in metric spaces, and also give an example to illustrate our main theorems. Our results extend the results of S. M. Kang, Y. J. Cho and G. Jungck [9].

  • PDF

On Special finsler Spaces With Common Geodesics

  • Kim, Byung-Doo;Park, Ha-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.331-338
    • /
    • 2000
  • In the present paper, we investigate a problem in a sym-metric Finsler space, which is a special space. First we prove that if a symmetric space remains to be a symmetric one under the Z-projective change, then the space is of zero curvature. Further we will study W-recurrent space and D-recurrent space under the pro-jective change.

  • PDF

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.257-264
    • /
    • 1992
  • Since Alfsen and Effors [1] introduced the notion of an M-ideal, many authors [3,6,9,12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (=K(X,X)) is an M-ideal in L(X) (=L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in $X^{**}$ [10]. If X is reflexive and K(X) is an M-ideal in L(X), then K(X)$^{**}$ is isometrically isomorphic to L(X)[5]. A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10].

  • PDF

An Efficient Split Algorithm to Minimize the Overlap between Node Index Spaces in a Multi-dimensional Indexing Scheme M-tree (다차원 색인구조 M-트리에서 노드 색인 공간의 중첩을 최소화하기 위한 효율적인 분할 알고리즘)

  • Im Sang-hyuk;Ku Kyong-I;Kim Ki-chang;Kim Yoo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.233-246
    • /
    • 2005
  • To enhance the user response time of content-based retrieval service for multimedia information, several multi-dimensional index schemes have been proposed. M-tree, a well-known multidimensional index scheme is of metric space access method, and is based on the distance between objects in the metric space. However, since the overlap between index spaces of nodes might enlarge the number of nodes of M-tree accessed for query processing, the user response time for content-based multimedia information retrieval grows longer. In this paper, we propose a node split algorithm which is able to reduce the sire of overlap between index spaces of nodes in M-tree. In the proposed scheme, we choose a virtual center point as the routing object and entry redistribution as the postprocessing after node split in order to reduce the radius of index space of a node, and finally in order to reduce the overlap between the index spaces of routing nodes. From the experimental results, we can see the proposed split algorithm reduce the overlap between index space of nodes and finally enhance the user response time for similarity-based query processing.