OPERATORS IN L(X,Y) IN WHICH K(X,Y) IS A SEMI M-IDEAL

CHONG-MAN CHO

1. Introduction

Since Alfsen and Effros [1] introduced the notion of an M-ideal, many authors [3, 6, 9, 12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (= K(X,X)) is an M-ideal in L(X) (= L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in X^{**} [10]. If X is reflexive and K(X) is an M-ideal in L(X), then $K(X)^{**}$ is isometrically isomorphic to L(X) [5].

A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10]. Lima proved the following results:

THEOREM 1.1 [10]. If K(X) is a semi M-ideal in L(X), then the following holds:

- (a) If (f_{α}) is a net in X^* such that $f_{\alpha} \to f$ in weak *-topology and $||f_{\alpha}|| = ||f|| = 1$ for all α , then $f_{\alpha} \to f$ in norm. More generally, if the closed unit ball B_{X^*} of X^* is weak*-dentable, then T^* is weak* to norm continuous on $\{f \in Y^* : ||f|| = 1\}$ for every $T \in L(X,Y)$.
- (b) If the closed unit ball B_X of X is dentable, then X is reflexive.

The purpose of this paper is to study, using Lima's idea, behaviors of operators in L(X,Y) in which K(X,Y) is a semi M-ideal. In Section

Received August 10, 1991. Revised February 20, 1992 Supported by KOSEF Grant No. 891-0102-016-2.

Chong-Man Cho

- 3, under the assumption that K(X,Y) is a semi M-ideal in L(X,Y) we will prove the following;
 - (a') If B_Y is dentable and (x_α) is a net in B_X such that $x_\alpha \to x_0$ ($||x_0|| = 1$) weakly, then $Tx_\alpha \to Tx_0$ in norm for every $T \in L(X,Y)$, and hence every $T \in L(X,Y)$ is weak to norm continuous on $\{x \in x : ||x|| = 1\}$.
 - (b') If B_Y is dentable and X has the property " δ " for some $\delta > 0$ which will be defined in Section 3, then no operator in L(X,Y) is bounded below, and hence X is not isomorphic to a subspace of Y.

2. Preliminaries

A closed subspace J of a Banach space X is called an L-summand if there is a projection P on X such that PX = J and ||x|| = ||Px|| + ||(I - P)x|| for every $x \in X$. A closed subspace J of X is called a semi L-summand if for every $x \in X$ there is a unique $y \in J$ such that $||x - y|| = \inf\{||x - z|| : z \in J\}$, and moreover this y satisfies ||x|| = ||y|| + ||x - y||. A closed subspace J of X is called an M-ideal (resp. a semi M-ideal) if J^0 , the annihilator of J in X^* , is an L-summand (resp. a semi L-summand) in X^* .

Alfsen and Effros [1] characterized M-ideals in terms of intersection properties of open balls without any reference to the dual space. Later Lima [8] gave the following characterizations of M-ideals and semi M-ideals by intersection properties of closed balls.

THEOREM 2.1 [8]. Let J be a closed subspace of a Banach space X. The following statements are equivalent:

- (i) J is an M-ideal in X.
- (ii) J satisfies the n-ball property for every $n \geq 3$. That is, if $\{B(a_i, r_i)\}_{i=1}^n$ is a family of closed balls in X such that

$$\bigcap_{i=1}^{n} B(a_i, r_i) \neq \emptyset \text{ and } J \cap B(a_i, r_i) \neq \emptyset$$

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

for each i, then for every $\varepsilon > 0$

$$J\cap\bigcap_{i=1}^n B(a_i,r_i+\varepsilon)\neq\emptyset,$$

where a_i and r_i are the center and the radius of $B(a_i, r_i)$, respectively.

- (iii) J satisfies the 3-ball property.
- (iv) Same as (ii) but with n = 3 and $a_i = x + x_i$ with $x \in B_X$, $x_i \in B_J$ for i = 1, 2, 3.

THEOREM 2.2 [8]. Let J be a closed subspace of a Banach space X. Then the following statements are equivalent:

- (i) J is a semi M-ideal in X.
- (ii) J satisfies the 2-ball property.
- (iii) For any $\varepsilon > 0$, any $x \in B_X$ and any $j \in B_J$, there exists $z \in J$ such that

$$|x \pm j - z| < 1 + \varepsilon.$$

A slice of a closed bounded convex set C in a Banach space X is a set of the form

$$S(x^*, \alpha) = \{x \in C : x^*(x) + \alpha \ge \sup x^*(C)\}$$

where $x^* \in X^*$, $||x^*|| = 1$ and $\alpha > 0$.

A closed bounded convex set C is said to be dentable if it has slices of arbitrarily small diameter [4, p.199]. It is known that a Banach space X has the Radon-Nikodym property if and only if each of its equivalent norm has the dentable closed unit ball [4, p.204]. The class of Banach spaces with the Radon-Nikodym property comprises reflexive spaces, separable dual spaces and many others.

3. Results

In this section we prove some properties possessed by all operators in L(X,Y) when K(X,Y) is a semi M-ideal in L(X,Y), and X and Y satisfy additional conditions. The following theorem is an analogue of Theorem 1.1 (a) and the proof given below is a minor modification of Lima's proof of Theorem 1.1 (a).

Chong-Man Cho

THEOREM 3.1. Suppose K(X,Y) is a semi M-ideal in L(X,Y) and B_Y is dentable. If (x_{α}) is a net in X such that $x_{\alpha} \to x_0$ weakly and $||x_{\alpha}|| \le ||x_0|| = 1$ for all α , then $Tx_{\alpha} \to Tx_0$ in norm for every $T \in L(X,Y)$, and hence every T in L(X,Y) is weak to norm continuous on $\{x \in X : ||x|| = 1\}$.

Proof. Suppose (x_{α}) is a net in X such that $x_{\alpha} \to x_0$ weakly and $||x_{\alpha}|| \le ||x_0|| = 1$ for all α . Let $\varepsilon > 0$. Since B_Y is dentable, there exists $g \in Y^*$ with ||g|| = 1 and 0 < t < 1 such that the slice

$$S(g,t) = \{ y \in B_Y : g(y) > 1 - t \}$$

has diameter less than ε . By the Bishop-Phelps theorem [4, p.189] we may assume that there exists $y_0 \in Y$ such that $g(y_0) = 1 = ||y_0||$.

Choose $f \in X^*$ with $||f|| = 1 = f(x_0)$ and define $S: X \to Y$ by

$$Sx = f(x)y_0$$
 for $x \in X$.

Then $S \in K(X, Y)$ and ||S|| = 1.

Let $T \in L(X,Y)$ with $||T|| \le 1$. Since K(X,Y) is a semi M-ideal in L(X,Y), by Theorem 2.2 there exists $U \in K(X,Y)$ such that

$$||S \pm (T - U)|| \le 1 + t/4.$$

For $x \in B_X$ with f(x) > 1 - t/4, we get

$$\begin{aligned} 1 + t/4 &\ge \|Sx \pm (T - U)x\| \\ &\ge |f(x)g(y_0) \pm g(T - U)x| \\ &> 1 - t/4 \pm g(T - U)x. \end{aligned}$$

Hence |g(T-U)x| < 2t/4 and

$$g\left(\frac{f(x)y_0 \pm (T-U)x}{1+t/4}\right) > \frac{(1-t/4) - 2t/4}{1+t/4} > 1-t.$$

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

Since
$$\frac{Sx \pm (T-U)x}{1+t/4}$$
 is in $S(g,t)$ and diam $S(g,t) < \varepsilon$, we get

$$||(T-U)x|| \le \frac{1}{1+t/4} || \{Sx + (T-U)x\} - \{Sx - (T-U)x\}|| < \varepsilon$$

for all $x \in B_X$ with f(x) > 1 - t/4.

Since $f(x_{\alpha}) \to f(x_0) = 1$ and a compact operator carries a weakly convergent net to a norm convergent net, there exists α_0 such that

$$f(x_{\alpha}) > 1 - t/4$$
 and $||Ux_{\alpha} - Ux_{\sigma}|| < \varepsilon$

for $\alpha \geq \alpha_0$. Hence we get that for $\alpha \geq \alpha_0$

$$||Tx_{\alpha} - Tx_{0}|| \leq ||(T - U)x_{\alpha}|| + ||Ux_{\alpha} - Ux_{0}|| + ||(T - U)x_{0}|| < 3\varepsilon.$$

Let us say that a Banach space X has the property " δ " for $\delta > 0$ if for each 0 < c < 1 there exist a sequence (x_n) in B_X and $f \in B_{X^*}$ such that $||x_n - x_m|| \ge \delta$ and $f(x_n) \ge c$ for all distinct n and m.

Recall that an operator $T \in L(X,Y)$ is said to be bounded below if there exists M > 0 such that $||Tx|| \ge M||x||$ for all $x \in X$, equivalently T is an isomorphism between X and T(X).

THEOREM 3.2. Suppose X and Y are Banach spaces and K(X,Y) is a semi M-ideal in L(X,Y). If X has the property " δ " for some $\delta > 0$ and B_Y is dentable, then no operator in L(X,Y) is bounded below, and hence X is not isomorphic to a subspace of Y.

Proof. For a contradiction suppose there exist $T \in L(X,Y)$ and M > 0 such that $||Tx|| \ge M||x||$ for all $x \in X$. We may assume that $||T|| \le 1$. Choose $\varepsilon > 0$ so that $4\varepsilon < M\delta$. As in Theorem 3.1, let S(g,t) be a slice with diameter less than ε . Again we may assume that ||g|| = g(z) = 1 = ||z|| for some $z \in Y$.

Since X has the property " δ " for some $\delta > 0$, there exist a sequence (x_n) in B_X and $f \in B_{X^*}$ such that $||x_n - x_m|| \ge \delta$ and $f(x_n) \ge 1 - t/4$ for all distinct n and m. We define $S: X \to Y$ by

$$Sx = f(x)z$$
.

Then $S \in K(X, Y)$ and $||S|| \le 1$.

Since K(X,Y) is a semi M-ideal in L(X,Y), there exists U in K(X,Y) such that

$$||S \pm (T - U)|| \le 1 + t/4.$$

Since $f(x_n) > 1 - t/4$ for all n, repeating the same argument used in the proof of Theorem 3.1 we get that

$$||Tx_n - Ux_n|| \le \varepsilon$$

for all n. By compactness of U, we have

$$\begin{split} M\delta &\leq M\|x_n - x_m\| \\ &\leq \|T(x_n - x_m)\| \\ &\leq \|Tx_n - Ux_n\| + \|Ux_n - Ux_m\| + \|Tx_m - Ux_m\| \\ &\leq 3\varepsilon \end{split}$$

for infinitely many n and m. This contradicts to the choice of ε and hence the proof is complete.

By a result of James [7], if X is a non-reflexive Banach space then for each 0 < c < 1 there exist sequences (x_n) in B_X and (f_n) in B_{X^*} such that

(i)
$$f_m(x_n) = c$$
 for $n \ge m$

(ii)
$$f_m(x_n) = 0$$
 for $n < m$.

Since $||x_m - x_n|| \ge f_m(x_m - x_n) = c$ for n < m, X has the property " δ " for all $0 < \delta < 1$. Thus from Theorem 3.2 we have the following result of Lima[Theorem 1.1 (b)].

COROLLARY 3.3. If X is a non-reflexive Banach space and K(X) is a semi M-ideal in L(X), then B_Y is not dentable.

COROLLARY 3.4. Suppose Y is a reflexive Banach space and Z is either an infinite dimensional Hilbert space or l_p for $1 . Let <math>X = Y \oplus_{\infty} Z$. Then K(X) is not a semi M-ideal in L(X).

Proof. Since X is reflexive, B_X is dentable. By Theorem 3.2, it suffices to prove that X has the property " δ " for some $\delta > 0$. Suppose $Z = l_p$. Fix $e \in Y$ with $\|e\| = 1$ and choose $f \in Y^*$ with $f(e) = \|f\| = 1$. Let (e_n) be the unit vector basis for l_p . Set $x_n = e + e_n \in X$ and regard f as a functional on X. Then $\|x_n\| = 1$, $f(x_n) = f(e) = 1 = \|f\|$ and $\|x_n - x_m\| = 2^{1/p}$ for all distinct n and m. Thus $Y \oplus_{\infty} l_p$ has the property " $2^{1/p}$ ".

If Z is an infinite dimensional Hilbert space, we simply replace the unit vector basis (e_n) of l_p by any orthornomal sequence in Z in the above proof.

References

- E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math. 96(1972), 98-173.
- 2. E. Behrends, M-structure and the Banach-Stone Theorem, Lecture note in Mathematics 736, Springer-Verlag (1979).
- C.-M. Cho, A note on M-ideals of Compact Operators, Canadian Math. Bull. 32(1989), 434-440.
- J. Diestel and J. Uhl, Vector measures, American Mathematical Surveys, No.15, 1977.
- P. Harmand and A. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283(1983), 253-264.
- J. Hennefeld, A Decomposition for B(X)* and Unique Hahn-Banach Extensions, Pacific J. Math. 46(1973), 197-199.
- R. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13(1972), 289-300.
- 8. A. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 227(1977), 1-62.
- 9. _____, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44(1979), 207-217.
- 10. _____, On M-ideals and Best Approximation, Indiana Univ. J. 31(1982), 27-36.
- 11. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin (1977).

Chong-Man Cho

- 12. K. Saatkamp, M-ideals of compact operators, Math. Z. 158(1978), 253-263.
- 13. _____, Schnitteigenschaften und Best Approximation, Dissertation, Bonn, 1979.

HANYANG UNIVERSITY, SEOUL 133-791, KOREA