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EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED
GERAGHTY-TYPE CONTRACTION WITH APPLICATION

Amrish Handa

Abstract. We establish coincidence point theorem for S-non-decreasing mappings
under Geraghty-type contraction on partially ordered metric spaces. With the help
of obtain result, we derive two dimensional results for generalized compatible pair
of mappings F, G : X2 → X. As an application, we obtain the solution of integral
equation and also give an example to show the usefulness of our results. Our results
improve, sharpen, enrich and generalize various known results.

1. Introduction

The Banach contraction principle is a classical, useful and powerful tool in non-
linear analysis. Weak contractions are generalizations of the Banach contraction,
which have been studied by various authors. Several authors studied the existence
of fixed point for weak contractions and generalized contractions in partially ordered
metric spaces. In particular, Geraghty proved in [8] an interesting generalization of
Banach contraction principle which had a lot of applications. For more details one
can consult [1− 7].

Hussain et al. [9] obtained some coupled coincidence point results with the help
of newly defined concept of generalized compatibility. Erhan et al. [7], declared that
the results established in Hussain et al. [9] can be deduce from the coincidence point
results in the existing literature.

In this paper, we establish coincidence point theorem for S-non-decreasing map-
pings under Geraghty-type contraction on partially ordered metric spaces. With the
help of the obtain result, we indicate the formation of a coupled coincidence point
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theorem of generalized compatible pair of mappings F, G : X2 → X. As an applica-
tion, we obtain the solution of integral equation and also give an example to show
the fruitfulness of our results. Our results improve, sharpen, enrich and generalize
the results of Kadelburg et al. [10] and various known results.

2. Preliminaries

In the sequel, X is a non-empty set. Given n ∈ N where n ≥ 2, let Xn be the
nth Cartesian product X ×X × ... ×X (n times). Let S : X → X be a mapping.
For simplicity, we denote S(x) by Sx where x ∈ X.

Definition 2.1 ([9]). Suppose that F, G : X2 → X are two mappings. F is said to
be G-increasing with respect to ¹ if for all x, y, u, v ∈ X, with G(x, y) ¹ G(u, v)
we have F (x, y) ¹ F (u, v).

Definition 2.2 ([9]). Let F, G : X2 → X be two mappings. We say that the pair
{F, G} is commuting if F (G(x, y), G(y, x)) = G(F (x, y), F (y, x)), for all x, y ∈ X.

Definition 2.3 ([9]). Suppose that F, G : X2 → X are two mappings. An element
(x, y) ∈ X2 is called a coupled coincidence point of mappings F and G if F (x,

y) = G(x, y) and F (y, x) = G(y, x).

Definition 2.4 ([9]). Let (X, ¹) be a partially ordered set, F : X2 → X and
g : X → X are two mappings. We say that F is g-increasing with respect to ¹ if
for any x, y ∈ X,

gx1 ¹ gx2 implies F (x1, y) ¹ F (x2, y),

gy1 ¹ gy2 implies F (x, y1) ¹ F (x, y2).

Definition 2.5 ([9]). Let (X, ¹) be a partially ordered set, F : X2 → X be a
mapping. We say that F is increasing with respect to ¹ if for any x, y ∈ X,

x1 ¹ x2 implies F (x1, y) ¹ F (x2, y),

y1 ¹ y2 implies F (x, y1) ¹ F (x, y2).

Definition 2.6 ([9]). Let F, G : X2 → X are two mappings. We say that the pair
{F, G} is generalized compatible if
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lim
n→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

lim
n→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0,

whenever (xn) and (yn) are sequences in X such that

lim
n→∞G(xn, yn) = lim

n→∞F (xn, yn) = x ∈ X,

lim
n→∞G(yn, xn) = lim

n→∞F (yn, xn) = y ∈ X.

Obviously, a commuting pair is a generalized compatible but not conversely in gen-
eral.

Definition 2.7 ([7]). Let (X, ¹) be a partially ordered set and endow the product
space X2 with the following partial order:

(2.1) (u, v) v (x, y) ⇔ x º u and y ¹ v, for all (u, v), (x, y) ∈ X2.

Definition 2.8 ([1]). Let (X, d, ¹) be a partially ordered metric space. Two
mappings T, S : X → X are said to be O-compatible if

lim
n→∞ d(STxn, TSxn) = 0,

provided that {xn} is a sequence in X such that {Sxn} is ¹-monotone, that is, it is
either non-increasing or non-decreasing with respect to ¹ and

lim
n→∞Txn = lim

n→∞Sxn ∈ X.

Lemma 2.1 ([12]). Let (X, d) be a metric space. Define δ : X2 ×X2 → [0, +∞)
by

δ((x, y), (u, v)) = max{d(x, u), d(y, v)}, for all (x, y), (u, v) ∈ X2.

Then δ is metric on X2 and (X, d) is complete if and only if (X2, δ) is complete.

3. Main Results

In [10], Kadelburg et al. introduced the class Θ of all functions θ : [0, +∞) → [0,

1) satisfying that for any sequence {tn} of non-negative real numbers θ(tn) → 1
implies that tn → 0.

Now, we will prove our main result.
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Theorem 3.1. Let (X, d, ¹) be a partially ordered metric space and let T, S : X →
X be two mappings such that T is (S, ¹)-non-decreasing, T (X) ⊆ S(X) and there
exists θ ∈ Θ such that

(3.1) d(Tx, Ty) ≤ θ(d(Sx, Sy))d(Sx, Sy),

for all x, y ∈ X where Sx ¹ Sy. There exists x0 ∈ X such that Sx0 ¹ Tx0. Also
assume that one of the following conditions holds.

(a) (X, d) is complete, T and S are continuous and the pair (T, S) is O-
compatible,

(b) (S(X), d) is complete and (X, d, ¹) is non-decreasing-regular,
(c) (X, d) is complete, S is continuous and monotone non-decreasing, the pair

(T, S) is O-compatible and (X, d, ¹) is non-decreasing-regular.
Then S and T have a coincidence point.

Proof. Let x0 ∈ X is arbitrary. Since T (X) ⊆ S(X), therefore there exists x1 ∈ X

such that Tx0 = Sx1. Then Sx0 ¹ Tx0 = Sx1. As T is (S, ¹)-non-decreasing and
so Tx0 ¹ Tx1. Repeating this procedure, there exists a sequence {xn}n≥0 such that
{Sxn} is ¹-non-decreasing, Sxn+1 = Txn ¹ Txn+1 = Sxn+2 and

(3.2) Sxn+1 = Txn, for all n ≥ 0.

Let ζn = d(Sxn, Sxn+1), for all n ≥ 0. By using contractive condition (3.1), we have

(3.3) d(Sxn+1, Sxn+2) = d(Txn, Txn+1) ≤ θ(d(Sxn, Sxn+1))d(Sxn, Sxn+1),

which, by the fact that θ < 1, implies

d(Sxn+1, Sxn+2) < d(Sxn, Sxn+1), that is, ζn+1 < ζn for all n ≥ 0.

Thus the sequence {ζn}n≥0 is decreasing. Hence there exists an ζ ≥ 0 such that

(3.4) lim
n→∞ ζn = lim

n→∞ d(Sxn, Sxn+1) = ζ.

We claim that ζ = 0. If possible, suppose ζ > 0. Then from (3.3), we obtain

ζn+1

ζn
≤ θ(ζn) < 1.

On taking limit as n →∞, we get

θ(ζn) → 1 as n →∞.

Using the properties of function θ, we have

ζn = d(Sxn, Sxn+1) → 0 as n →∞,
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which contradicts the assumption that ζ > 0. Hence, by (3.4), we get

(3.5) lim
n→∞ ζn = lim

n→∞ d(Sxn, Sxn+1) = 0.

We now claim that {Sxn}n≥0 is a Cauchy sequence in (X, d). Suppose, to the
contrary, that the sequence {Sxn}n≥0 is not a Cauchy sequence. Then there exists
an ε > 0 for which we can find subsequences {xn(k)}, {xm(k)} of {xn}n≥0

with
n(k) > m(k) ≥ k such that

(3.6) d(Sxn(k), Sxm(k)) ≥ ε.

Let n(k) be the smallest positive integer satisfying (3.6). Then

(3.7) d(Sxn(k)−1, Sxm(k)) < ε.

By using (3.6), (3.7) and triangle inequality, we have

ε ≤ rk = d(Sxn(k), Sxm(k))

≤ d(Sxn(k), Sxn(k)−1) + d(Sxn(k)−1, Sxm(k))

< d(Sxn(k), Sxn(k)−1) + ε.

Letting k →∞ in the above inequality and using (3.5), we get

(3.8) lim
k→∞

rk = lim
k→∞

d(Sxn(k), Sxm(k)) = ε.

By the triangle inequality, we have

rk = d(Sxn(k), Sxm(k))

≤ d(Sxn(k), Sxn(k)+1) + d(Sxn(k)+1, Sxm(k)+1) + d(Sxm(k)+1, Sxm(k))

≤ ζn(k) + ζm(k) + d(Txn(k), Txm(k))

≤ ζn(k) + ζm(k) + θ(d(Sxn(k), Sxm(k)))d(Sxn(k), Sxm(k))

≤ ζn(k) + ζm(k) + rk.

This shows that

rk ≤ ζn(k) + ζm(k) + θ(rk)rk ≤ ζn(k) + ζm(k) + rk.

On taking limit as n →∞ in the above inequality, by using (3.5) and (3.8), we get

θ(rk) → 1 as n →∞.

Using the properties of function θ, we obtain

rk = d(Sxn(k), Sxm(k)) → 0 as k →∞,
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which implies that

lim
k→∞

rk = lim
k→∞

d(Sxn(k), Sxm(k)) = 0,

which contradicts the fact that ε > 0. Consequently {Sxn}n≥0 is a Cauchy sequence
in X. We claim that T and S have a coincidence point between cases (a)− (c).

Suppose (a) holds, that is, (X, d) is complete, T and S are continuous and the pair
(T, S) is O-compatible. Since (X, d) is complete, therefore there exists z ∈ X such
that {Sxn} → z. It follows, from (3.2), that {Txn} → z. As T and S are continuous,
so {TSxn} → Tz and {SSxn} → Sz. Since the pair (T, S) is O-compatible, we
conclude that

d(Sz, Tz) = lim
n→∞ d(SSxn+1, TSxn) = lim

n→∞ d(STxn, TSxn) = 0,

that is, z is a coincidence point of S and T.

Suppose now (b) holds, that is, (S(X), d) is complete and (X, d, ¹) is non-
decreasing-regular. As {Sxn}n≥0 is a Cauchy sequence in the complete space (S(X),
d), so there exists y ∈ S(X) such that {Sxn} → y. Let z ∈ X be any point such
that y = Sz, then {Sxn} → Sz. Also, since (X, d, ¹) is non-decreasing-regular
and {Sxn} is ¹-non-decreasing converging to Sz, therefore we get Sxn ¹ Sz for all
n ≥ 0. Applying the contractive condition (3.1), we have

d(Sxn+1, T z) = d(Txn, T z) ≤ θ(d(Sxn, Sz))d(Sxn, Sz),

which, by the fact θ < 1, implies

d(Sxn+1, T z) ≤ d(Sxn, Sz).

Letting n → ∞ in the above inequality and using limn→∞ Sxn = Sz, we get d(Sz,

Tz) = 0, that is, z is a coincidence point of S and T.

Suppose now that (c) holds, that is, (X, d) is complete, S is continuous and
monotone non-decreasing, the pair (T, S) is O-compatible and (X, d, ¹) is non-
decreasing-regular. As (X, d) is complete and so there exists z ∈ X such that
{Sxn} → z. It follows, from (3.2), that {Txn} → z. As S is continuous, then
{SSxn} → Sz. Furthermore, since the pair (T, S) is O-compatible, it means that
{TSxn} → Sz.

As (X, d, ¹) is non-decreasing-regular and {Sxn} is ¹-non-decreasing converging
to z, we obtain that Sxn ¹ z, which, by the monotonicity of S, implies SSxn ¹ Sz.

Thus, by using contractive condition (3.1), we get

d(TSxn, T z) ≤ θ(d(SSxn, Sz))d(SSxn, Sz),
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which, by the fact θ < 1, implies

d(TSxn, T z) ≤ d(SSxn, Sz).

On taking n → ∞ and by using SSxn → Sz and TSxn → Sz as n → ∞, we get
d(Sz, Tz) = 0, that is, z is a coincidence point of S and T. ¤

Taking θ(s) = k with k ∈ [0, 1) for all s ≥ 0 in Theorem 3.1, we obtain the
following corollary:

Corollary 3.2. Let (X, d, ¹) be a partially ordered metric space and let T, S :
X → X be two mappings T is (S, ¹)-non-decreasing, T (X) ⊆ S(X) and there exists
k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(Sx, Sy),

for all x, y ∈ X where Sx ¹ Sy. There exists x0 ∈ X such that Sx0 ¹ Tx0. Also
assume that one of the conditions (a) − (c) of Theorem 3.1 holds. Then S and T

have a coincidence point.

4. Coupled Coincidence Point Results

Now, we find the two dimensional version of Theorem 3.1. For this, we shall
consider the partially ordered metric space (X2, δ, v), where δ was defined in Lemma
2.1 and v was introduced in (2.1). We define the mappings TF , TG : X2 → X2, for
all (x, y) ∈ X2, by

TF (x, y) = (F (x, y), F (y, x)) and TG(x, y) = (G(x, y), G(y, x)).

Lemma 4.1 ([2]). Let (X, d, ¹) be a partially ordered metric space and let F,

G : X2 → X be two mappings. Then
(1) (X, d) is complete if and only if (X2, δ) is complete.
(2) If (X, d, ¹) is regular, then (X2, δ, v) is also regular.
(3) If F is d-continuous, then TF is δ-continuous.
(4) If F is G-increasing with respect to ¹, then TF is (TG, v)-non-decreasing.
(5) If there exist two elements x0, y0 ∈ X with G(x0, y0) ¹ F (x0, y0) and

G(y0, x0) º F (y0, x0), then there exists a point (x0, y0) ∈ X2 such that TG(x0,

y0) v TF (x0, y0).
(6) For any x, y ∈ X, there exist u, v ∈ X such that F (x, y) = G(u, v) and F (y,

x) = G(v, u), then TF (X2) ⊆ TG(X2).



116 Amrish Handa

(7) If the pair {F, G} is generalized compatible, then the mappings TF and TG

are O-compatible in (X2, δ, v).
(8) A point (x, y) ∈ X2 is a coupled coincidence point of F and G if and only if

it is a coincidence point of TF and TG.

Theorem 4.1. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X2 → X are two generalized compatible mappings
for which there exists θ ∈ Θ such that

d(F (x, y), F (u, v))(4.1)

≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})
×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))},

for all x, y, u, v ∈ X, with G(x, y) ¹ G(u, v) and G(y, x) º G(v, u). Suppose F is
G-increasing with respect to ¹, G is continuous and there exist two elements x0, y0

∈ X with

G(x0, y0) ¹ F (x0, y0) and G(y0, x0) º F (y0, x0).

Suppose that for any x, y ∈ X, there exist u, v ∈ X such that

(4.2) F (x, y) = G(u, v) and F (y, x) = G(v, u).

Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
Then F and G have a coupled coincidence point.

Proof. Let x, y, u, v ∈ X be such that G(x, y) ¹ G(u, v) and G(y, x) º G(v, u).
Then by using (4.1), we have

d(F (x, y), F (u, v))

≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})
×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}.

Furthermore G(y, x) º G(v, u) and G(x, y) ¹ G(u, v), the contractive condition
(4.1) also assure that

d(F (y, x), F (v, u))

≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})
×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}.
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Combining them, we get

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))}(4.3)

≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})
×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}).

Thus, by using (4.3), we get

δ(TF (x, y), TF (u, v)))

= δ((F (x, y), F (y, x)), (F (u, v), F (v, u)))

= max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))}
≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})

×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}
≤ θ(δ(TG(x, y), TG(u, v)))δ(TG(x, y), TG(u, v)).

It is only require to apply Theorem 3.1 to the mappings T = TF and S = TG in
the partially ordered metric space (X2, δ, v) with the help of all items of Lemma
4.1. ¤

Corollary 4.2. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X2 → X are two commuting mappings for which
there exists θ ∈ Θ satisfying (4.1), for all x, y, u, v ∈ X with G(x, y) ¹ G(u, v) and
G(y, x) º G(v, u). Suppose F is G-increasing with respect to ¹, G is continuous
and there exist two elements x0, y0 ∈ X with

G(x0, y0) ¹ F (x0, y0) and G(y0, x0) º F (y0, x0).

Suppose that for any x, y ∈ X, there exist u, v ∈ X satisfying (4.2). Also suppose
that either

(a) F is continuous or
(b) (X, d, ¹) is regular.
Then F and G have a coupled coincidence point.

Corollary 4.3. Let (X, ¹) are a partially ordered set such that there exists a
complete metric d on X. Assume F : X2 → X and g : X → X are two mappings
such that F is g-increasing with respect to ¹ and there exists θ ∈ Θ such that

d(F (x, y), F (u, v))(4.4)

≤ θ(max{d(gx, gu), d(gy, gv)}) max{d(gx, gu), d(gy, gv)},
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for all x, y, u, v ∈ X with gx ¹ gu and gy º gv. Suppose that F (X2) ⊆ g(X), g is
continuous and the pair {F, g} is compatible. Also suppose that either

(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

gx0 ¹ F (x0, y0) and gy0 º F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 4.4. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X2 → X and g : X → X are two mappings such that
F is g-increasing with respect to ¹ for which there exists θ ∈ Θ satisfying (4.4), for
all x, y, u, v ∈ X, with gx ¹ gu and gy º gv. Suppose that F (X2) ⊆ g(X), g is
continuous and the pair {F, g} is commuting. Also suppose that either

(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

gx0 ¹ F (x0, y0) and gy0 º F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 4.5. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X2 → X is an increasing mapping with respect to ¹
and there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) ≤ θ(max{d(x, u), d(y, v)})max{d(x, u), d(y, v)},

for all x, y, u, v ∈ X, with x ¹ u and y º v. Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

x0 ¹ F (x0, y0) and y0 º F (y0, x0).

Then F has a coupled fixed point.

In a similar way, we may state the results analog of Corollary 3.2.
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Example 4.1. Let X = R furnished with the usual metric d : X2 → [0, +∞) with
the natural ordering of real numbers ≤ . Let F, G : X2 → X be defined as

F (x, y) =
{

ln(1 + x2 − y2), if x ≥ y,
0, if x < y,

and

G(x, y) =
{

x2 − y2, if x ≥ y,
0, if x < y.

Define θ : [0, +∞) → [0, 1) as follows

θ(s) =
{

ln(1+s)
s , s > 0,
0, s = 0.

Firstly, we shall show that the contractive condition of Theorem 4.1 should satisfy
by the mappings F and G. Let x, y, u, v ∈ X such that G(x, y) ¹ G(u, v) and G(y,

x) º G(v, u), we have

d(F (x, y), F (u, v))

= |F (x, y)− F (u, v)|
=

∣∣ln (
1 + x2 − y2

)− ln
(
1 + u2 − v2

)∣∣

=
∣∣∣∣ln

1 + x2 − y2

1 + u2 − v2

∣∣∣∣

=
∣∣∣∣ln

(
1 +

(x2 − y2)− (u2 − v2)
1 + u2 − v2

)∣∣∣∣
≤ ln

(
1 +

∣∣(x2 − y2)− (u2 − v2)
∣∣)

≤ ln(1 + |G(x, y)−G(u, v)|)
≤ ln(1 + d(G(x, y), G(u, v)))

≤ ln(1 + max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})
max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}

×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}
≤ θ(max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))})

×max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}.

Thus the contractive condition of Theorem 4.1 is satisfied for all x, y, u, v ∈ X.

Furthermore, like in [9], all the other conditions of Theorem 4.1 are satisfied and
z = (0, 0) is a coupled coincidence point of F and G.



120 Amrish Handa

5. Application to Integral Equations

In this fragment, we study the existence of the solution to a Fredholm nonlinear
integral equation. Consider the following integral equation

(5.1) x(p) =
∫ b

a
(K1(p, q) + K2(p, q))[f(q, x(q)) + g(q, x(q))]dq + h(p),

for all p ∈ I = [a, b].

Let Θ denote the set of all functions θ : [0, +∞) → [0, +∞) having the following
properties:

(iθ) θ is non-decreasing,
(iiθ) θ(p) ≤ ln(p + 1).

Definition 5.1 ([11]). A pair (α, β) ∈ X2 with X = C(I, R), where C(I, R) denote
the set of all continuous functions from I to R, is called a coupled lower-upper solution
of (5.1) if, for all p ∈ I,

α(p) ≤
∫ b

a
K1(p, q)[f(q, α(q)) + g(q, β(q))]dq

+
∫ b

a
K2(p, q)[f(q, β(q)) + g(q, α(q))]dq + h(p),

β(p) ≥
∫ b

a
K1(p, q)[f(q, β(q)) + g(q, α(q))]dq

+
∫ b

a
K2(p, q)[f(q, α(q)) + g(q, β(q))]dq + h(p).

Theorem 5.1. Consider the integral equation (5.1) with K1, K2 ∈ C(I × I, R), f,

g ∈ C(I × R, R) and h ∈ C(I, R) satisfying the following conditions:
(i) K1(p, q) ≥ 0 and K2(p, q) ≥ 0 for all p, q ∈ I.

(ii) There exist positive numbers λ, µ and θ ∈ Θ such that for all x, y ∈ R with
x º y, the following conditions hold:

0 ≤ f(q, x)− f(q, y) ≤ λθ(x− y),(5.2)

0 ≤ g(q, x)− g(q, y) ≤ µθ(x− y).(5.3)

(iii)

(5.4) max{λ, µ} sup
p∈I

∫ b

a
[K1(p, q) + K2(p, q)]dq ≤ 1

2
.
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Suppose that there exists a coupled lower-upper solution (α, β) of (5.1). Then the
integral equation (5.1) has a solution in C(I, R).

Proof. Consider X = C(I, R) with the following partial order

x ¹ y ⇐⇒ x(p) ≤ y(p), ∀p ∈ I,

for all x, y ∈ C(I, R). It is noticeable that X is a complete metric space with respect
to the sup metric

d(x, y) = sup
p∈I

|x(p)− y(p)| .

Define the following partial order on X2 : for (x, y), (u, v) ∈ X2,

(x, y) ¹ (u, v) ⇐⇒ x(p) ≤ u(p) and y(p) ≥ v(p), ∀p ∈ I.

Define θ : [0, +∞) → [0, 1) as follows

θ(s) =
{

ln(1+s)
s , s > 0,
0, s = 0.

and the mapping F : X2 → X by

F (x, y)(p) =
∫ b

a
K1(p, q)[f(q, x(q)) + g(q, y(q))]dq

+
∫ b

a
K2(p, q)[f(q, y(q)) + g(q, x(q))]dq + h(p),

for all p ∈ I. One can easily prove, like in [9], that F is increasing. Then, for all x,

y, u, v ∈ X with x º u and y ¹ v, we have

F (x, y)(p)− F (u, v)(p)

=
∫ b

a
K1(p, q)[(f(q, x(q))− f(q, u(q))) + (g(q, y(q))− g(q, v(q)))]dq

+
∫ b

a
K2(p, q)[(f(q, y(q))− f(q, v(q))) + (g(q, x(q))− g(q, u(q)))]dq.

Thus, by using (5.2) and (5.3), we have

F (x, y)(p)− F (u, v)(p)(5.5)

≤
∫ b

a
K1(p, q) [λθ (x(q)− u(q)) + µθ (y(q)− v(q))] dq

+
∫ b

a
K2(p, q) [λθ (y(q)− v(q)) + µθ (x(q)− u(q))] dq.
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Since the function θ is non-decreasing and x º u, y ¹ v, we have

θ (x(q)− u(q)) ≤ θ(sup
q∈I

|x(q)− u(q)|) = θ(d(x, u)),

θ (y(q)− v(q)) ≤ θ(sup
q∈I

|y(q)− v(q)|) = θ(d(y, v)).

Hence by (5.5), we obtain

|F (x, y)(p)− F (u, v)(p)|

≤
∫ b

a
K1(p, q)[λθ(d(x, u)) + µθ(d(y, v))]dq

+
∫ b

a
K2(p, q)[λθ(d(y, v)) + µθ(d(x, u))]dq.

Now, taking the supremum with respect to p, by using (5.4), we get

d(F (x, y), F (u, v))

≤ max{λ, µ} sup
p∈I

∫ b

a
(K1(p, q) + K2(p, q))dq.[θ(d(x, u)) + θ(d(y, v))]

≤ θ(d(x, u)) + θ(d(y, v))
2

.

Thus

(5.6) d(F (x, y), F (u, v)) ≤ θ(d(x, u)) + θ(d(y, v))
2

.

Now, since θ is non-decreasing, we have

θ(d(x, u)) ≤ θ(max{d(x, u), d(y, v)}),
θ(d(y, v)) ≤ θ(max{d(x, u), d(y, v)}),

which implies, by (iiθ), that

θ(d(x, u)) + θ(d(y, v))
2

≤ θ(max{d(x, u), d(y, v)})
≤ ln(1 + max{d(x, u), d(y, v)}).

Thus, by (5.6), we have

(5.7) d(F (x, y), F (u, v)) ≤ ln(1 + max{d(x, u), d(y, v)}).
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Now, by (5.7), we have

d(F (x, y), F (u, v))

≤ ln(1 + max{d(x, u), d(y, v)})
≤ ln(1 + max{d(x, u), d(y, v)})

max{d(x, u), d(y, v)} ×max{d(x, u), d(y, v)}
≤ θ(max{d(x, u), d(y, v)}) max{d(x, u), d(y, v)}),

which is the contractive condition of Corollary 4.5. Let (α, β) ∈ X2 be a coupled
upper-lower solution of (5.1), then we have α(p) ≤ F (α, β)(p) and β(p) ≥ F ( β,

α)(p), for all p ∈ I. Thus all the hypothesis of Corollary 4.5 are satisfied. Conse-
quently, F has a coupled fixed point (x, y) ∈ X2 which is the solution of integral
equation (5.1) in X = C(I, R).
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