• Title/Summary/Keyword: 2-dimensional light source

Search Result 56, Processing Time 0.027 seconds

Study on 3 Dimensional Images Using LED by PLS with No Viewing Zone Forming Optics (LED를 PLS 배열로 사용한 시역 형성 광학계가 없는 3차원 영상의 시역에 대한 연구)

  • Choi, Kyu-Hwan;Kim, Sung-Kyu;Son, Jung-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 2008
  • A two dimensional point light source array can replace both the viewing zone forming optics and the back light panel in the contact-type 3 dimensional imaging systems based on LC panels. This replacement can make the system structure of the 3 dimensional imaging systems no different from that of the conventional LCD and can reduce undesirable visual effects caused by the viewing zone forming optics. The problem with the point light source array is the visual quality deterioration of the system due to the non-ideal nature of the array.

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.

Performance Evaluation of 2-Dimensional Light Source using Mercury-free Flat Fluorescent Lamps for LCD Backlight Applications

  • Park, Joung-Hu;Cho, Bo-Hyung;Lee, Ju-Kwang;Whang, Ki-Woong
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2009
  • Recently, 2-dimensional flat light sources have been attracting much attention for its use in LCD backlight applications because of its high luminous efficiency and uniformity. A long-gap discharge, mercury-tree flat fluorescent lamp has been developed, which shows a high brightness ($>5000\;cd/m^2$) and high luminous efficacy (60 lm/W). Additionally, it has a wide operating margin and stable driving condition with the aid of an auxiliary electrode. For driving the lamp, a narrow pulse power to maintain the glow discharge state is required. Since there has been no research for this kind of lamp driving, this paper proposes a newly developed short-pulse, high-voltage lamp-driving scheme. The proposed lamp system uses a ballast with a coupled-inductor in order to raise the short pulse voltage up to the lamp ignition level and to obtain energy-recovery action during the glow discharge mode. The operation principles are presented and also the system performances such as the lighting efficiency, spatial and angular uniformities are evaluated by hardware experiments. The results show that the proposed lighting system is a good candidate for the next-generation of LCD backlight systems.

3-dimensional Nano Structures for Semiconductor Light Source (반도체 광원 적용을 위한 3차원 나노 구조 개발)

  • Kim, Je Won
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.96-101
    • /
    • 2020
  • In micro-sized light emitting diodes, which are increasingly attentions as the light sources of displays and semiconductor lighting, increasing the amount of light and improving the luminous efficiency are very important and various development directions and methods have been proposed. In this study, the design of 3-dimensional nano structures through nano frame formation and the application of a nano pattern and a reactive etching method were proposed. And it will also be discussed that nano pillar arrays with nano cavities having improved verticality can be applied to semiconductor light sources through the development of nano frame structures.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

The scanned point-detecting system for three-dimensional measurement of light emitted from plasplay panel (플라즈마 디스플레이 패널에서 방출되는 광의 3차원 측정을 위한 Scanned Point-Detecting System)

  • 최훈영;이석현;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • In this paper, we designed and made the scanned point detecting system for 3-dimensional measurement of the light emitted from plasma display panel (PDP) , and we measured and analyzed 3-dimensional light emitted from a real PDP by using this scanned point detecting system. The scanned point detecting system has a point detector with a pinhole. The light emitted from the source at the in-focus position can pass through the pinhole and be collected by detector. The light from other sources at outof-focus positions is focused at points in front of or behind the pinhole, and thus it is intercepted by the pinhole. Therefore, we can detect light information from a particular point of a PDP cell of 3-dimensional structure. We know the electric field distribution inside the PDP cell from the 3-dimensionallight intensity distribution measured by using the scanned point detecting system. As the Z axial measurement increases, the intensity of light detected increases and intensity of light detected on the inside edge of the ITa electrode is larger than outside edge of the ITa eletrode and gap of the ITa electrodes. Also, as the measurement point moves from one barrier rib to another, the detected light is weaker near to the barrier ribs than at the center between the barrier ribs. The emitted light is concentrated at the center between barrier ribs. ribs.

  • PDF

Evaluation of Oxidation Efficiency of Aromatic Volatile Hydrocarbons using Visible-light-activated One-Dimensional Metal Oxide Doping Semiconductor Nanomaterials prepared by Ultrasonic-assisted Hydrothermal Synthesis (초음파-수열합성 적용 가시광 활성 일차원 금속산화물 도핑 반도체 나노소재를 이용한 방향족 휘발성 탄화수소 제어효율 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.967-974
    • /
    • 2018
  • In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using $WO_3$-doped $TiO_2$ nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of $WO_3$ into $TiO_2$ nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.

Sensibility Evaluation Model Research as to The Three-dimensional Surface Light Source set In The Interior (실내 3D 입체 면광원 조명연출에 관한 감성평가 모형 연구)

  • Lee, Jin-Sook;Park, Ji-Young;Jeong, Chan-Ung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.14-26
    • /
    • 2015
  • This study has been conducted so as to analyse user's sensibility on lighting method, correlated color temperature and illumination by composing surface light source, which was projected onto a unit side of interior wall, ceiling and floor. 1) As an analyzed results of the sensibility images, it showed that the "snug & tender" value had got higher when the correlated color temperature got lower. And the "energetic, cheerful" value had got higher when the level of illuminance got lower. Furthermore, the "unusual, unique" showed higher value on the illuminated floor circumstance. Finally, the higher correlated color temperature had been, "energetic, cheerful" value also got higher. 2) As a result of multi-regression analysis, it was found that 3000K and 100lx had the biggest influence on 'snug' image while 5,500K, 500lx had the biggest influence on 'energetic' image. In addition, it was found that the illuminated floor had a big influence on 'unusual' image while 500lx had the biggest influence on 'refined' image.

Improvement of the Accuracy of Optical Simulation Using by the Multi-cube UV Source in PDP Cells (Multi-cube UV source 이용한 PDP에서 광학시뮬레이션의 정확성 개선에 관한 연구)

  • Kang, Jung-Won;Eom, Chul-Whan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-44
    • /
    • 2007
  • Optical simulation of the rear and front panel geometries were needed to improve the luminance and efficiency in PDP cells. The 3-dimensional optical code can be used to analyze the variation of geometries and changing of optical properties. In order to improve the accuracy of simulated results, a new UV source, called a multi-cubes UV source, was designed. To design the source, at first UV distribution was calculated with the plasma fluid code and then the UV distribution was transformed to the multi-cube structures in the optical code. Compared to the results from existing UV source, called a planar UV source, could be improved the accuracy of visible light distribution. Simulated results were also compared to the visible distribution measured with the ICCD in a real PDP cell.

  • PDF

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.