• Title/Summary/Keyword: 2-dimensional finite element method

Search Result 901, Processing Time 0.032 seconds

Analysis of Sound Fields by Finite Element Method (유한요소법에 의한 음장해석에 관한 연구)

  • Choi Seok Joo;Tachibana Hideki;Park Byeong Jeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.5
    • /
    • pp.51-58
    • /
    • 1989
  • The finite element method is usually formulated by utilizing the variation principle. In this paper, we introduce the approximate equation of finite element from Helmholtz eqation by means of the Galerkin method, which provides the best approximation of those methods known as the method of weighted residuals, and a numerical simulation based of the finite element method is applied to analysing the acoustic modes and the pattern of sound radiation in two and three dimensional sound fields. Beside the numerical calculations, the acoustic modes and the sound pressure level are mesured by scale model experiments. The finite element analysis of the model shows very good agreement with the mesured results.

  • PDF

Two-Dimensional Finite Element Analysis of Stream Water Quality (하천수질(河川水質)의 2차원(次元) 유한요소해석(有限要素解析))

  • Shin, Eung Bai;Suh, Seung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.89-98
    • /
    • 1987
  • Analyzed by using finite element method was 2-dimensional pollutant transtport phenomenon considering longitudinal and lateral direction in river. The Galerkin's finite element method based on linear interpolation is used and triangle is adopted as an element. In a number of model test attempts it has been demonstrated that the results calculated by the model are in good agreement with analytical solutions in a simplified channel where there is a known solution available. Actual application of the model is attempted along the 9km reach of the Han River considering the influx of the Tan Cheon and the Joongryang Cheon. The resultant 2-dimensional BOD concentrations profile in the reach is exhibiting more realistically the field situations than conventional 1-dimensional models are.

  • PDF

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method (확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석)

  • Kim, Jun-Yeon;Jeong, Cheol-Yong;Lee, Seon-Yeong;Cheon, Chang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship (온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석)

  • Cho, Seong Soo;Ha, Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

An Adaptive Finite Element Computation for the Added Mass of a Rectangular Cylinder in a Canal

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.27-32
    • /
    • 1986
  • This paper describes an application of the adaptive finite element computations to a free surface flow problem in a canal. A-posteriori error estimates for the adaptive finite element computations are based on the dual extremum principles. Previously the dual extremum principles were applied to compute the upper and lower bounds of the added mass of two-dimensional cylinders in a canal[1,2]. However, the present method improves the convergence of the computed results by utilizing the local error estimates and by applying the adaptive meshes in the finite element computations. In a test result using triangular elements it is shown that the numerical error in the adaptive finite elements reduces quadratically compared with that in a uniform mesh subdivision.

  • PDF

2 Dimensional Nonlinear Finite Element Analysis for Layered Elastomeric Bearings (비선형 유한요소법에 의한 탄성받침의 이차원 해석)

  • Park, Moon-Ho;Kim, Jin-Kyu;Lee, Seong-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • A geometric and material nonlinear finite element analysis is developed for the layered elastomeric bearings. In this study, a mixed variational approach with separate variables is used to describe the displacement and volume change of rubber. To represent finely deformed behavior, Kirchoff stress tensors are used and converted Eulerian stress tensors to describe real physical meanings. Newton's method is utilized to solve the governing nonlinear finite element equations. Numerical test are performed in the case of compression and shear to verify the theory and to illustrate the application of this analysis. And the results of this study were compared to the results of Moore's discrete finite element analysis.

  • PDF

Two-Dimensional Resistivity Modeling by Finite Element Method (유한요소법에 의한 2차원 비저항 모델링)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 1986
  • Finite element method with linear triangular and bilinear rectangular elements is applied to solve the three-dimensional potential distribution due to a point source of current located in or on the surface of the earth containing arbitrary two-dimensional resistivity distribution. The modeling technique developed in this paper is flexible to model conductive inhomogeneity and surface topographies, and more accurate to evaluate surface potentials than the conventional techniques using finite difference method. Since it is possible to reduce nodal points with acceptable accuracy, this modeling technique is very efficient and economic in terms of execution time and core space. A few geologic structures adequate to demonstrate above features are simulated in this paper.

  • PDF