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An Adaptive Finite Element Computation for the Added Mass of
a Rectangular Cylinder in a Canal

Kwang June Bai*

Abstract

This paper describes an application of the adaptive finite element computations to a free surface

flow problem in a canal. A-posteriori error estimates for the adaptive finite element computations

are based on the dual extremum principles. Previously the dual extremum principles were applied

to compute the upper and lower bounds of the added mass of two-dimensional cylinders in a canal

“1,22. However, the present method improves the convergence of the computed results by utilizing

the local error estimates and by applying the adaptive meshes in the finite element computations,

In a test result using triangular elements it is shown that the numerical error in the adaptive

finite elements reduces quadratically compared with that in a uniform mesh subdivision.

1. Introduction

The finite element method has been successfully
applied to a wide area of engineering problems which
were origininally formulated in a form of partial
differential equations., While the engineers from many
diciplines are investigating further applications to the
problems of their interests, some applied mathemati-
cians has made steady efforts towards adaptive mesh
refinement through a rigorous local error analysis.
The application of adaptive mesh refinement is still
in progress and its application is restricted to rather
simple mathematical models [3,4,5,6]. It seems to
be quite timely that a workshop on this subject was
held recently[7].

In this paper an application of the adaptive mesh

refinement is described. The basis of the present

application is a dual extremum principle for a two-
dimensional potential flow problem. A straightforward
application of the dual extremum principle has been
made to obtain the upper and lower bounds of the
added mass for the limiting frequencies in a canal
[1]. The theory of the calculus of variations shows
that the solutions of certain types of problems is
characterized by both a maximum principle and a
(different but related) minimum principles, referred
to as the dual extremum principles. Theses principles
are also known as the complementary variational
principles or the upper and lower bounding principles.
Cne of the more well-known pairs of dual extremum
principles is the upper- and lower-beund principles
associated with the Dirichlet problem of potential
theory. We will follow this in the paper. However,
cne can find a very extensive and systematic deriva-

tion of the dual extremum principles in a unified
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account of a diverse range of problems by Noble and
Sewell[8].

Now we are interested in estimating the local
errors in the computed results. In general the dual
extremum principles can not be used for a local error
estimation, since the principles state only the maxi-
mum and minimum of a quantity which is defined
as an integral over the entire domain. However, the
dual extremum principle used in Bai [1] can be
extended to give a criterion for the local error esti-
mates under an appropriate assumption. Once the
local error can be defined, then the application of an
adaptive mesh refine ment is straightforward.

The physical problem treated here is an infinitely
long rectangular cylinder swaying in an infinitely
long canal with a rectangular cross section. This
physical problem reduces to a two dimensional prob-
lem with a free surface. It is further assumed here
that the circular frequency of oscillation becomes zero.
Then the classical linearized free surface boundary
condition reduces to a rigid wall condition in a
potential flow problem.

In this paper the results obtained by an adaptive
mesh refinement are compared with those by a uni-
form mesh refinement. It is shown that the applica-
tion of the adaptive finite element method is more

efficient in the present computations.

2. The Dual Extremum Principles

In this section, we present an application of the
dual extremum principles to obtain the upper and
lower bounds of the added mass of a two dimensional
cylinder in a restricted water, Specifically, the sway
added mass for the zero frequency limit is obtained
as an application. First, we assume that the x-axis
coincides with the free surface and the y-axis is
vertically upward. Further we assume that the fluid
domain and its boundary are symmetric with respect
to the y-axis. Since the sway motion of the rectang-
ular cylinder is assumed, we can treat only half of
the fluid domain. In Fig. 1 the boundary configuration
is given: the fluid domain is denoted as R, and the

boundaries on the body, the free surface, the canal
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Fig. 1. Boundary Configurations

and the y-axis are denoted by Sy, S, S», and S,
respectively. The rectangular body S; has the half
beam of a and the draft b. The half-breadth and the
depth of the canal are ¢ and d, respectively. Hence

the mathematical formulation can be written as

follows:
724z, y) =0 in R
od/on=n on S (1a-d)
2¢/0n=0 on Sy and S,
$=0 on S,

where #=(ny, n;) is outward unit normal vector.
For the goal of contructing a related functional,
we formulate the foregoing problem (1) in terms of

stream function ¢(z,y) as follows:

iz, y) =0 in R

o=y on Sp (2a-d)
¢=0 on Sy and S

9¢/0n=0 on S,

Since the following classical dual-extremum princi-
ples are discussed in some detail by Courant and
Hilbert [9] and Authurs[10], we give only a brief
description here. From the classical theory of calculus
of variations, the problem can also be expressed by

the following variational principles:

8J{p} =0 (32)
with the essential condition (1d) where
J{p}=— L F¢)2dzdy+2 f SquSdS (3b)

and
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SK{¢}=0 (4a)
with the essential conditions (2b) and (2¢c) where
Kig)= | @prdeay (4b)

It is easy to show the equivalence of (1) and (3) or
(2) and (4), More details can be found in Bai(1).
If ¢o and ¢ are the exact solutions of Eqs (1) and
(2), respectively, then the velocity fields computed
from either the velocity potential or the stream fun-

ction are the same, i.e.,

[Folz, 3) | = Pdolz, 5| at (z,y)=R (5}
and we have
[ wo0dzay={ wyorazay. ©

By Green’s theorem, (6) reduces to a line integral

along the closed boundary of the domain

ﬂR(ngo)?dxdy: ﬁR(mO) 2dzdy= f dedS (D)

Then the sway added mass for the zero frequency
limit, g, can be defined as

p=o [  moedS=¢Jo=pKo (8)

where p is the density of the fluid and

Jo=J{¢o}, Ko=K{¢o}
From this relation, we obtain the following useful
inequality:

J{¢)<p/p<<K{¢} ©)

The equality holds only when ¢ and ¢ are the exact

solutions.

3. The Total and Local Error Estimates

The total relative error E; in the sway added mass
is defined as
Ei= K{g}—J{¢} )

K{gi+J{¢}
If we assume that the numerical approximate solu-

tions are close to the exact solutions, ¢o and ¢,
respectively, then with the relation (5) we can
define the following relative local error E; as

E=L [ (wp—wpHdzay a

where Ry is a local domain, i.e., RLCR and g is
the most accurate approximation available to us, Here
#=2.0728 of Bai (1) is used.

Further we assume that the errors E; and E; can
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be represented, as the number of nodes (W) increases,
by

Ei=A:(1/N)™
and

E,=A,(1/N)" (12a,b)
Here the constants Aj, Az,7m, and 2 are to be deter-
mined from the cumputed results. By taking natural
logarithms both sides, Eqs (12a) and (12b) reduce to

logE1=logAi+mlog(1/N) (13a)
and

logE,=logA;+nlog(1/N) (13b)
4. Numerical Results and Discussions

Computations are made for a rectangular section in
a rectangular canal with a/b=1, ¢/d=1, c¢/a=2. In
the present computation, the half fluid-domin was
initially subdivided into 6 equal triangular elements
with 8 total nodes as shown in Fig. 2. Two sets of
finite element mesh refinements are tested: in the
first set, the finite element subdivisions are refined
uniformly in the entire domain of computation into
a number of equal triangles, while in the second set,
the adaptive finite element subdivisions are employed.
In the present adaptive mesh subdivision procedures,

the element which has the largest local error esti-

® ®
@ ®

2 c 8

Fig. 2 The initial fiinite-element sudivisions
(6 elements and 8 nodes)
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Uniform Mesh
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Adaptive Mesh

Fig. 3 Finite-element mesh refinements(In both figures, the initial 6 elements are shown by

thicker lines)

w
[
o

_ ) /
Total Node No = /g

®

Element No.

3) Uniform Mesh

S
#
2
[,‘— / ‘a\
A‘\\ |
3k Total Hoda No.= /8 ‘
o / //@\
\
2 \\
1 \\
Ak
c’\e/ 75 b
1] L ] |
D 0 0 o 6 0

Element Ng.
b) Adaptive Mesh

Fig. 4 The convergence of the local errors in two sets of mesh refinements

mate is refined into four equal triangles. During the
mesh refinement procedure, the neighboring elements
may have to be subdivided in order not to have a
unconnected node on their side. This procedure is
repeated. Throughout the computations, the local
error estimates are summed up for each of the initial
6 elements.

Typical mesh refinements of two different sets are
shown in Fig. 3. In Table 1, the total number of
elements and nodes in the successive mesh refinements

is given. Also given are the upper and lower bounds

of the added mass and the maximum local error.
The maximum lccal errors occur always in the 5th
element shown in Fig 2. It can be interpreted as
the presence of a singularity at the corner gives a
strong influence on the present computed results.
Fig. 4 shows the convergence of the local errors in
the initial 6 elements. This reuslt shows that the
maximum local error reduces faster in the adaptive
mesh subdivisions than in the regular uniform mesh
subdivisions. It should be noted that it is desirable

to obtain a uniform error distribution in all of the 6
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Table 1 The uppear and lower bounds of added mass
#/2¢ac and maximum local errors for two
sets of mesh subdivisions

Set NNode lElement _—vBound Max. Local
umber| Number Lower | Upper Error

8 | 6 |1.50501] 3.00000] 0.45635

21 24 | 1.81282] 2.40489] 0.21626

U 40 | 54 |1.91566) 2.26185  0.14461
65 | 96 |1.96418 2.22007) 0.10876

i 9 | 150 |1.99171) 2.16766 0.0869%
b8 6 | 1.50501| 3.00000  0.45635
11 121 1.60000 2.50000  0.26534
T 18 | 1.76399| 2.40513  0.22239
Al 18 24 | 1.82324) 2.30952]  0.16830
| 2 30 | 1.87093] 2.26540f  0.13525
|2 36 | 1.89645) 2.23478  0.10944
.29 42 | 1.91335| 2.21711]  0.09161

U: Uniform mesh subdivisions
A: Adaptive mesh subdivisions

3
\\ — —:Uniform
\ . Adznti
\ ——: Adzptive
o
<
=,
1 L 1 1 1 1 1 1 1
0 20 40 60 80 100
N
Fig. 5 The upper and lower bounds of the sway
added mass

elements. Even though we did not cbtain more uni-
form error distribution here, it suffices to show that
the adaptive mesh subdivision provides more uniform
local error distributions than the regular uniform mesh
subdivision.

Fig. 5 shows the convergence of the upper and
lower bounds of the added mass obtained by the two
sets of the mesh refinements. The result shows that
the accuracy of the added mass computed by the
adaptive mesh subdivisions are approximately comp-

arable to that computed by twice as many nodes in
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Fig. 6 The convergence test for the error El
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Fig. 7 The convergence test for the maxi mum local
error E2

the uniform mesh subdivisions.

Fig 6 and Fig 7 show the convergence of the
sway added mass and the maximum local error with
respect to the total number of modes N, respectively
The index m defined in Eq (12) is approximately
0.7 in the uniform mesh subdivision and 1.4 in the
adptive mesh subdivision. This shows that the rate
of convergence is quadratic for the adaptive mesh
refinement compared to that for the uniferm mesh
refinement. The maximum local error shows the
similar behabiour: #=0.6 and 1.3 for the uniform

and adaptive mesh subdivisions, respecitvely,
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