• Title/Summary/Keyword: 2-NBDG uptake

Search Result 14, Processing Time 0.025 seconds

Effect of 2-NBDG, a Fluorescent Derivative of Glucose, on Microbial Cell Growth

  • Shin, Dong-Sun;Oh, Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.834-837
    • /
    • 2002
  • A fluorescent glucose analogue,2-[N-(7-nitrobenz-2-ox a-1,3-diazol-4-yl) amino] -2- deoxy-D-glucose (2-NBDG), which had previously been developed for the analysis of glucose uptake in living cells, was investigated to determine its biological activity on microorganisms.2-NBDG did not show any inhibitory effect on growth of yeast cells and bacteria. In contrast, 2-NBDG exhibited strong inhibitory effects on filamentous fungal growth. The growth of filamentous fungi was completely inhibited, when 2-NBDG was supplemented as sole carbon source. The inhibitory effect was decreased by the addition of glucose in the test medium. Furthermore, 2-NBDC inhibited chitinase activity of Trichoderma sp. These results suggested that the inhibitory effects of 2-NBDG on filamentous fungi might be partially due to the inhibition of chitinase.

Antidiabetic Activity and Enzymatic Activity of Commercial Doenjang Certified for Traditional Foods (전통식품 품질인증 일부 시판 된장의 효소활성 및 항당뇨 활성)

  • Lee, So-Young;Kim, In-Sun;Park, So-Lim;Lim, Seong-Il;Choi, Hye-Sun;Choi, Shin-Yang
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.361-366
    • /
    • 2012
  • We investigated the anti-diabetic activity and enzymatic activity of 24 commercial doenjang samples certified for traditional foods. Twenty four doenjang samples showed the wide ranges in enzymatic activities (protease activities 0-50.45 unit/g, ${\alpha}$-amylase activities 0-675.9 unit/g, ${\beta}$-amylase 13.6-308.6 unit/g), and there were no difference in enzymatic activity by the producing region. To evaluate the potential anti-diabetic activity of 24 doenjang samples, we examined the effect of doenjang methanol extract (DME) on 2-[n-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amyno]-2-deoxy-d-glucose (2-NBDG) uptake. Ten samples among 24 samples significantly stimulated the uptake of 2-NBDG. When the cells were treated with DME at 400 ug/mL, No. 17 and 23 specially stimulated 2-NBDG uptake by 1.23-fold and 1.25-fold, respectively, compared with untreated control cell. And there were no cytotoxicity in the C2C12 cells treated with DME at concentration of 500 ug/mL. Among 24 samples, No. 6, 7, 12, 21 and 24 showed the ${\alpha}$-glucosidase inhibitor activity at concentration of 10 mg/mL; however, they were less effective than acarbose which is a commercial ${\alpha}$-glucosidase inhibitor.

Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L.

  • Kim, Hye-Kyung;Baek, Soon-Sun;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • Inhibition of intestinal glucose uptake is beneficial in reducing the blood glucose level for diabetes. To search for an effective intestinal glucose uptake inhibitor from natural sources, 70 native edible plants, fruits and vegetables were screened using Caco-2 cells and fluorescent D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). A compound that was able to inhibit glucose uptake was isolated from methanol extract of Punica granatum L. and called PG-1a. PG-1a appears to be a phthalic acid-diisononyl ester- like compound (PDE) with molecular weight of 418. The inhibitory effect of PG-1a on intestinal glucose uptake was dose-dependent with 89% inhibition at $100\;{\mu}g$/mL. Furthermore, the intestinal glucose uptake inhibitory effect of PG-1a was 1.2-fold higher than phlorizin, a well known glucose uptake inhibitor. This study suggests that PG-1a could play a role in controlling the dietary glucose absorption, and that PG-1a can effectively improve the diabetic condition, and may be used as an optional therapeutic and preventive agent.

The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells

  • Park, So Yeon;Kim, Min Hye;Ahn, Joung Hoon;Lee, Su Jin;Lee, Jong Ho;Eum, Won Sik;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2014
  • Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and ${\alpha}$-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases ($PKC{\theta}$ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of $500{\mu}M$ EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-${\beta}$-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.

Evaluation of Anti-diabetic Effect of Biochanin A in C2C12 Myotube (근육세포 배양 계 에서 Biochanin A의 항 당뇨 효능평가)

  • Hwang, Jin-Taek;Kim, Sung-Hee
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.57-60
    • /
    • 2012
  • In this study, we evaluated the effects of Biochanin A on glucose uptake in C2C12 myotube. We found that Biochanin A significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in a dose-dependent manner. In addition, AMPK and PPAR-gamma activities were markedly increased by Biochanin A in a dose-dependent manner. However, Akt, an insulin dependent signaling molecule, did not change by Biochanin A. These results suggest that Biochanin A stimulates glucose uptake via AMPK and PPAR-gamma pathways.

Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells

  • Rajan, Priyanka;Natraj, Premkumar;Ranaweera, Sachithra S.;Dayarathne, Lakshi A.;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.4.1-4.15
    • /
    • 2022
  • Background: Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the antiadipogenic effects of flavonoids are unclear. Objectives: The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. Methods: The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. Results: The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. Conclusion: The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.

The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells

  • Dayarathne, Lakshi A.;Ranaweera, Sachithra S.;Natraj, Premkumar;Rajan, Priyanka;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.92.1-92.12
    • /
    • 2021
  • Background: Naringin and its aglycone naringenin are citrus-derived flavonoids with several pharmacological effects. On the other hand, the mechanism for the anti-diabetic effects of naringenin and naringin are controversial and remain to be clarified further. Objective: This study examined the relationship between glucose uptake and AMP-activated protein kinase (AMPK) phosphorylation by naringenin and naringin in high glucose-treated HepG2 cells. Methods: Glucose uptake was measured using the 2-NBDG fluorescent D-glucose analog. The phosphorylation levels of AMPK and GSK3β (Glycogen synthase kinase 3 beta) were observed by Western blotting. Molecular docking analysis was performed to evaluate the binding affinity of naringenin and naringin to the γ-subunit of AMPK. Results: The treatment with naringenin and naringin stimulated glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Both flavonoids increased glucose uptake by promoting the phosphorylation of AMPK at Thr172 and increased the phosphorylation of GSK3β. Molecular docking analysis showed that both naringenin and naringin bind to the γ-subunit of AMPK with high binding affinities. In particular, naringin showed higher binding affinity than the true modulator, AMP with all three CBS domains (CBS1, 3, and 4) in the γ-subunit of AMPK. Therefore, both naringenin and naringin could be positive modulators of AMPK activation, which enhance glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Conclusions: The increased phosphorylation of AMPK at Thr172 by naringenin and naringin might enhance glucose uptake regardless of insulin stimulation in high glucose treated HepG2 cells.

A Comparative Study on the Efficacy and Mechanism of Improving Glucose Uptake of Cannabis Root and Stem Extracts (대마 뿌리 및 줄기 추출물의 포도당 흡수 개선 효과 및 기전에 대한 비교 연구)

  • Hye-Lin Jin;Ga-Ram Yu;Hyuck Kim;Kiu-Hyung Cho;Ki-Hyun Kim;Dong-Woo Lim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2023
  • Objectives: Despite the pharmacological potential of the roots and stems of hemp based on literatures, active research has not been conducted for a long time. Comparative experiments were conducted on antioxidant and anti-inflammatory effects and improvement of glucose uptake using Cannabis root and stem extracts. Methods: Antioxidant contents in Cannabis root and stem extracts were examined with total phenolic, tannin, flavonoid assay. Anti-inflammatory properties were tested in lipopolysaccharides-treated RAW264.7 cells. Efficacy of Cannabis root and stem extracts on glucose uptake was investigated using fluorescent glucose analog (2-NBDG) in palmitate-treated HepG2 cells. The mechanism of action on metabolism was examined by western blot. Results: Antioxidant and anti-inflammatory efficacy were greater in stem extracts, but improvements in glucose uptake performed under various conditions were found to be greater in root extracts. It is assumed that Cannabis root extracts exhibited an improvement in glucose uptake through mechanisms such as AMP-activated protein kinase activation, not depending on general antioxidant and anti-inflammatory effects. Conclusions: Further research is needed on the mechanisms and substances that exhibit the anti-diabetic effects of Cannabis roots and stems.

ᴅ-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

  • Kim, Eunju;Kim, Yoo-Sun;Kim, Kyung-Mi;Jung, Sangwon;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. $\small{D}$-xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of $\small{D}$-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS: Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with $\small{D}$-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with $\small{D}$-xylose. These groups were maintained for two weeks. The effects of $\small{D}$-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic ${\beta}$-cells were analyzed. RESULTS: In vivo, $\small{D}$-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. $\small{D}$-xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of $\small{D}$-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with $\small{D}$-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS: In this study, $\small{D}$-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, $\small{D}$-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by ${\beta}$-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.

The Antidiabetic Effects of Black Ginseng Extract(BGE)and Geumsan Black Ginseng 05-FF(GBG05-FF) on In Vitro and In Vivo Assay (흑삼추출물(BGE)과 금산흑삼표준화소재(GBG05-FF)의 In Vitro와 In Vivo상에서의 항당뇨효과)

  • Seo, Yun-Soo;Shon, Mi-Yae;Kong, Ryong;Kang, Ok-Hwa;Zhou, Tian;Kim, Do-Yeon;Park, Jong-Dae;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.321-326
    • /
    • 2015
  • The prevalence of diabetes mellitus continues to rise alarmingly because of industrialization of society. The aim of this study was to investigate the antidiabetic effects of black ginseng extract (BGE) which was performed panax ginseng. First we examined the inhibitory effects of BGE on ${\alpha}$-glucosidase. But there was no practical effects in our observations. We, also, investigate the effects of BGE on glucose uptake of skeletal muscle using 2-NBDG in $C_2C_{12}$ myotube. BGE significantly improved the glucose uptake considered as a lowered blood glucose level. Effects of GBG05-FF on fasting blood glucose and glycated hemoglobin (HbA1c) were investigated in streptozotocin (STZ)-induced diabetic mouse. After injection of STZ, fasting blood glucose and glycated hemoglobin rapidly increased. But STZ-induced diabetic mouse treated with GBG05-FF significantly reduced the level of fasting blood glucose and HbA1c. This results showed that supplementation of BGE improve the diabetic parameters and BGE have a potentiality as a functional food for Diabetes mellitus.