DOI QR코드

DOI QR Code

Antidiabetic Activity and Enzymatic Activity of Commercial Doenjang Certified for Traditional Foods

전통식품 품질인증 일부 시판 된장의 효소활성 및 항당뇨 활성

  • Lee, So-Young (Fermentation and Functional Research Group, Korea Food Research Institute) ;
  • Kim, In-Sun (Fermentation and Functional Research Group, Korea Food Research Institute) ;
  • Park, So-Lim (Fermentation and Functional Research Group, Korea Food Research Institute) ;
  • Lim, Seong-Il (Fermentation and Functional Research Group, Korea Food Research Institute) ;
  • Choi, Hye-Sun (Department of Agro-food resources, National Academy of Agricultural science, RDA) ;
  • Choi, Shin-Yang (Fermentation and Functional Research Group, Korea Food Research Institute)
  • 이소영 (한국식품연구원 발효기능연구단) ;
  • 김인선 (한국식품연구원 발효기능연구단) ;
  • 박소림 (한국식품연구원 발효기능연구단) ;
  • 임성일 (한국식품연구원 발효기능연구단) ;
  • 최혜선 (농진청 국립농업과학원 농식품자원부) ;
  • 최신양 (한국식품연구원 발효기능연구단)
  • Received : 2012.11.15
  • Accepted : 2012.11.20
  • Published : 2012.12.31

Abstract

We investigated the anti-diabetic activity and enzymatic activity of 24 commercial doenjang samples certified for traditional foods. Twenty four doenjang samples showed the wide ranges in enzymatic activities (protease activities 0-50.45 unit/g, ${\alpha}$-amylase activities 0-675.9 unit/g, ${\beta}$-amylase 13.6-308.6 unit/g), and there were no difference in enzymatic activity by the producing region. To evaluate the potential anti-diabetic activity of 24 doenjang samples, we examined the effect of doenjang methanol extract (DME) on 2-[n-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amyno]-2-deoxy-d-glucose (2-NBDG) uptake. Ten samples among 24 samples significantly stimulated the uptake of 2-NBDG. When the cells were treated with DME at 400 ug/mL, No. 17 and 23 specially stimulated 2-NBDG uptake by 1.23-fold and 1.25-fold, respectively, compared with untreated control cell. And there were no cytotoxicity in the C2C12 cells treated with DME at concentration of 500 ug/mL. Among 24 samples, No. 6, 7, 12, 21 and 24 showed the ${\alpha}$-glucosidase inhibitor activity at concentration of 10 mg/mL; however, they were less effective than acarbose which is a commercial ${\alpha}$-glucosidase inhibitor.

Keywords

References

  1. Korean Diabetes Association (2008) Health Insurance Review & Assessment Service. Report of Task Force Team For Basic Statistical Study of Korean Diabetes Mellitus: Diabetes in Korea, 1st ed., Goldfishery, Seoul, Korea.
  2. Levetan, C. (2007) Oral antidaibetic agent in type 2 diabets. Curr. Med. Res. Opin. 23: 945-952. https://doi.org/10.1185/030079907X178766
  3. Krentz, A. J. and C. J. Bailey (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 63: 1373-1405.
  4. Chattopadhyay, R. R. (1999) A comparative evaluation of some blood sugar lowering agents of plant origin. J. Ethnopharmacology 67: 367-372. https://doi.org/10.1016/S0378-8741(99)00095-1
  5. Miura, T., N. Ueda, K. Yamada, M. Fukushima, T. Ishida, T. Kaneko, F. Matsuyama, T. Ishida, T. Kaneko, F. Matsuyama, and Y. Seino (2006) Antidiabetic effects of corosolic acid in KK-Ay diabetic mice. Biol. Pharm. Bull. 29: 585-587. https://doi.org/10.1248/bpb.29.585
  6. Baskaran, K., B. Kizar Ahamath, K. Radha Shanmugasundaram, and E. R. B. Shanmugasundaram (1990) Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J. Ethanopharmacology 30: 295-305. https://doi.org/10.1016/0378-8741(90)90108-6
  7. Lee, J. O. and C. H. Ryu (2002) Preparation of low salt doenjang using by nisin producing lactic aicd bacteria. J. Korea Soc. Food Sci. Nutr. 31: 75-80. https://doi.org/10.3746/jkfn.2002.31.1.075
  8. Kim, M. L., E. J. Park, and J. S. Jeong (2010) Sensory characteristics of doenjang with added licorice powder as assessed by response surface methodology. Korean J. Food Cookery Sci. 26: 62-71.
  9. Cheigh, H. S. and C. Y. Lee (1993) Antioxidative and antimutagenic characteristics of melanoidin related products. J. Korean Soc. Food Nutr. 22: 246-52.
  10. Lee, D. H., J. H. Kim, B. H. Yoon, G. S. Lee, S. Y. Choi, and J. S. Lee (2003) Changes of physiological functionalities during the fermentation of medicinal herbs Doenjang. Kor. J. Food Preserv. 10: 213-218.
  11. Kwon, D. Y., J. W. Daily, H. J. Kim, and S. M. Park (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30: 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
  12. Korea Food and Drug Administration (2011) Korean Food Standards codex. pp. 5-20-2. Korea Food and Drug Administration, Seoul, Korea.
  13. Korea Food Research Institute, Submission of manuscript. http://foodcert.kfri.re.kr.(2012).
  14. National Agricultural Products Quality Management Service (2012) Traditional food standards. pp. 88-93. Samjung press, National Agricultural Products Quality Management Service, Seoul, Korea.
  15. Fuwa, H. (1954) A new method for microdetermination of amylase activity by the use of amylase as the substrate. J. Biochem. 41: 583-603. https://doi.org/10.1093/oxfordjournals.jbchem.a126476
  16. Lee, N. Y., Y. S. Kim, and D. H. Shin (2003) Characteristics of microbes for high temperature fermenration and the effect of high temperature fermentation of soy. Food Sci. Biotechnol. 12: 390-398.
  17. Anson, M. L. (1938) The estimation of pepsin, trypsin, and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-89. https://doi.org/10.1085/jgp.22.1.79
  18. Scofield, A. M., L. E. Fellows, R. J. Nash, and G. W. J. Fleet (1986) Inhibition of mammalian digestive disaccharidases by polyhydroxy alkaloids. Life Sci. 39: 645-650. https://doi.org/10.1016/0024-3205(86)90046-9
  19. Nam, Y. D., S. Y. Lee, and S. L. Lim (2012) Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155:36-42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013
  20. Park, J. S. (1992) Histological changes of Deonjang during the fermentation with defferent strains. Korea J. Food Sci. Technol. 24: 477-481.
  21. Park, J. S., M. R. Lee, J. S. Kim, and T. S. Lee (1994) Composition of nitrogen compound and amino acid in soybean paste doenjang prepared with different microbial sources. Korean J. Food Sci. Technol. 26: 609-615.
  22. Kim, J. H., J. S. Yoo, S. Y. Kim, and K. S. Lee (2006) Quality properties of soybeans pastes made from meju with mold producing protease isolated from traditional meju. J. Korean Soc. Appl. Biol. Chem. 49: 7-14.
  23. Kim, S. H., S. J. Kim, B. H. Kim, S. G. Kang, and S. T. Jung (2000) Fermentation of doenjang prepared with seasalts. Korean J. Food Sci. Technol. 9: 131-137.
  24. MoK, C. K., K. T. Song, J. Y. Lee, Y. S. Park, and S. B. Lim. (2005) Changes in microorganisms and enayme activity of low salt soybean paste (Doenjang) during fermentation. Food Eng. Progress. 9: 112-117.
  25. Joo, H. K., N. D. Kim, and K. S. Yoon (1989) Changes of enzymatic activities during the fermentation of soybean paste by Aspergillus spp. J. Korean Agric. Chem. Soc. 32: 295-302.
  26. Murphy, P., T. Song, G. Buseman, K. Barua, G. Beecher, D. Trainer, and J. Holden (1999) Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 47: 2697-2704. https://doi.org/10.1021/jf981144o
  27. Lee, Y. W., J. D. Kim, J. Zheng, And K. H. Row (2007) Comparisons of isoflavones from Koran and Chinese soybean and processed products. Biochem. Eng. J. 36: 49-53. https://doi.org/10.1016/j.bej.2006.06.009
  28. Jang, C. H., C. S. Park, J. K. Lim, J. H. Kim, D. Y. Kwon. Y. S. Kim, D. H. Shin, and J.S. Kim (2008) Metabolism of isoflavone derivatives during manufacturing of traditional meju and doenjang. Food Sci. Biotechnol. 17: 442-445.
  29. Kwon, D. Y., J. S. Jang, J. E. Lee, Y. S. Kim, D. W. Shin, and S. Park (2006) The isoflavonoid aglycone-rich fractions of chungkookjang unsalted soybeans, enhance insulin signaling and peroxisome proliferator activated receptor-$\gamma$activity in vitro. Biofactors 26: 245-258. https://doi.org/10.1002/biof.5520260403
  30. Barnes, S., L. Coward, M. Kirk, and J. Sgakianos (1998) HPLCmass spectrometry anylysis of isoflavones. Proc. Soc. Exp. Biol. Med. 217: 254-262. https://doi.org/10.3181/00379727-217-44230
  31. Choi, H. K., J. H. Yoon, Y. S. Kim, and D. Y. Kwon (2007) Metabolomic profiling of cheonggukjang during fermentation by 1H NMR spectrometry and principal components analysis. Process Biochem. 42: 263-266. https://doi.org/10.1016/j.procbio.2006.07.014
  32. Fischer, P. B., G. B. Karlsson, R. A. Dwek, and F. M. Platt (1996) N-butyladeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure. J. Virol. 70: 7153-7160.

Cited by

  1. Influence of water-soluble extracts of long-term fermented Doenjang on bone metabolism bioactivity and breast cancer suppression vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0072-0
  2. Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.866
  3. 전통장류유래 Bacillus spp.의 프로바이오틱스 활성과 청국장 발효 특성 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1168
  4. Changes of Physiochemical and Enzymatic Activities of doenjang Prepared with Different Amount of Rice koji during 30 Days of Fermentation vol.10, pp.2, 2021, https://doi.org/10.3390/foods10020372
  5. Quality characteristics of tomato ‘Soksungjang’ prepared with Rhizopus oligosporus Koji vol.28, pp.2, 2012, https://doi.org/10.11002/kjfp.2021.28.2.252