• Title/Summary/Keyword: 2-D LC MS/MS

Search Result 184, Processing Time 0.036 seconds

Persistence Study of Thiamethoxam and Its Metabolite in Kiwifruit for Establishment of Import Tolerance

  • Il Kyu Cho;Gyeong Hwan Lee;Woo Young Cho;Yun-Su Jeong;Danbi Kim;Kil Yong Kim;Gi-Woo Hyoung;Chul Hong Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.355-364
    • /
    • 2022
  • BACKGROUND: Pre-harvest interval and decline pattern of thiamethoxam were determined in kiwifruit using liquid chromatography-tandem mass spectrometry (LCMS/MS). The study was carried out to propose import tolerance using OECD maximum residue limit (MRL) calculator for the export promotion of kiwifruit to Taiwan. METHODS AND RESULTS: The thiamethoxam residue in kiwifruit was determined by using the LC-TriQ-MS/MS with the analytical process to set up the import tolerance under greenhouse conditions for Taiwan. Excellent linearity was observed for all of the analytes with a determination coefficient (R2)≥0.99. The limit of quantification was determined to be 0.01 mg/kg for both thiamethoxam and clothianidin in kiwifruit. Linearity was determined from the co-efficient of determinants (R2) obtained from the seven-point calibration curve. The standard calibration curve showed as follows; 1) Site 1 (Gimje): y = 944,406X + 1,583 (R2=0.9995), 2) Site 2 (Goheung): y = 1,356,205X + 934 (R2=0.9983), and 3) Site 3 (Jangheung): y = 1,239,937X - 3,090 (R2=0.9908). The residue of thiamethoxam in the kiwifruit for three decline trials showed the range of 0.35 to 0.56 mg/kg in site 1 (Gimje), 0.24 to 0.55 mg/kg in site 2 (Goheung), and 0.28 to 0.42 mg/kg in site 3 (Jangheung), respectively. However, clothianidin was not detected in all of the treatments. The maximum residual amounts (decline) in the samples, sprayed according to the safe-use standard for thiamethoxam 10% WG in kiwifruit (30 days before harvest, 3 sprays every 7 days) were 0.56 mg/kg in site 1, 0.55 mg/kg in site 2, and 0.42 mg/kg in site 3, respectively. CONCLUSION(S): The import tolerance (IT) of thiamethoxam for kiwifruit may be proposed to be 0.9 mg/kg by using the OECD MRL calculator.

New Algicidal Compounds from a Marine Algicidal Bacterium against Cochlodinium polykrikoides

  • Jeong, Seong-Yun;Kim, Min-Ju;Lee, Sang-Youb;Son, Hong-Joo;Lee, Sang-Joon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.285-289
    • /
    • 2006
  • In screening of algicidal bacteria, we isolated a marine bacterium which had potent algicidal effects on harmful algal bloom (HAB) species. This organism was identified as a strain very close to Bacillus subtilisby 16S rRNA gene sequencing. This bacterium, Bacillus sp. SY-1, produces very active algicidal compounds against the harmful dinoflagellate Cochlodinium polykrikoides. We isolated three algicidal compounds (MS 1056, 1070, 1084) and identified them by amino acid analyses, fast atom bombardment mass spectrometry (FAB-MS), infrared spectroscopy (IR), $^1H$, $^{13}C$, and extensive two-dimensional nuclear magnetic resonance (2D NMR) techniques including $^1H-^{15}N$ HMBC analysis. One of them, MS 1056, contains a b-amino acid residue with an alkyl side chain of $C_{15}$. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with an $LC_{50}$ (6 hrs) of 2.3, 0.8, $0.6\;{\mu}g/ml$, respectively. These compounds also showed significant algicidal activities against other harmful dinoflagellates and raphidophytes. In contrast, MS 1084 showed no significant growth inhibition against various organisms coexisting with HAB species in natural environments, including bacteria, eukaryotic microalgae, and cyanobacteria, although it inhibited growth of some fungi and yeasts. These observations imply that algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of HABs in the natural environments.

  • PDF

Wewakamide A and Guineamide G, Cyclic Depsipeptides from the Marine Cyanobacteria Lyngbya semiplena and Lyngbya majuscula

  • Han, Bingnan;Gross, Harald;Mcphail, Kerry L.;Goeger, Doug;Maier, Claudia S.;Gerwick, William H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.930-936
    • /
    • 2011
  • Two new cyclic depsipeptides wewakamide A (1) and guineamide G (2) have been isolated from the marine cyanobacterium Lyngbya semiplena and Lyngbya majuscula, respectively, collected from Papua New Guinea. The amino and hydroxy acid partial structures of wewakamide A and guineamide G were elucidated through extensive spectroscopic techniques, including HR-FABMS, 1D $^1H$ and $^{13}C$ NMR, as well as 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The sequence of the residues of wewakamide A was determined through a combination of ESI-MS/MS, HMBC, and ROESY. Wewakamide A possesses a ${\beta}$-amino acid, 3-amino-2-methylbutanoic acid (Maba) residue, which has only been previously identified in two natural products, guineamide B (3) and dolastatin D (4). Although both new compounds (1,2) showed potent brine shrimp toxicity, only guineamide G displayed significant cytotoxicity to a mouse neuroblastoma cell line with $LC_{50}$ values of 2.7 ${\mu}M$.

Determination and Validation of an Analytical Method for Dichlobentiazox in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Dichlobentiazox 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Choi, Ha Na;Yoon, Sang Soon;Jung, Young-Hyun;Yoon, Hae Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2021
  • BACKGROUND: Dichlobentiazox is a newly registered pesticide in Korea as a triazole fungicide and requires establishment of an official analysis method for the safety management. Therefore, the aim of this study was to determine the residual analysis method of dichlobentiazox for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods were applied to establish the extraction method, and the EN method was finally selected through the recovery test. In addition, various adsorbent agents were applied to establish the clean-up method. As a result, it was found that the recovery of the tested pesticide was reduced when using the d-SPE method with PSA and GCB, but C18 showed an excellent recovery. Therefore this method was established as the final analysis method. For the analysis, LC-MS/MS was used with consideration of the selectivity and sensitivity of the target pesticide and was operated in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 70-120%, with standard deviation and coefficient of variation of less than 3.0% and 11.6%, respectively. CONCLUSION: Dichlobentiazox could be analyzed with a modified QuEChERS method, and the method determined would be widely available to ensure the safety of residual pesticides in Korea.

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.

A Study on the Degradation Mechanism of Diazinon and the Acute Toxicity Assessment in Photolysis and Photocatalysis (광반응과 광촉매 반응을 이용한 Diazinon 농약의 분해 기전과 독성 평가에 관한 연구)

  • Oh, Ji-Yoon;Kim, Moon-Kyung;Son, Hyun-Seok;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1087-1094
    • /
    • 2008
  • Diazinon is a phosphorothiate insecticide widely used in the world including Korea. This study investigates the feasibility of photolysis and photocatalysis processes for the degradation of diazinon in water. Both photolysis and photocatalysis reactiosn were effective in degrdading diazinon, however lower TOC removals were achieved. In case of photocatalysis, approximately 40% of nitrogen from diazinon was recovered as NO$_3^-$, and less than 5% of phosphorus as PO$_4{^{3-}}$. However, the sulfur in diazinon molecule was completely recovered to SO$_4{^{2-}}$ from photocatalysis reaction, and the recovery from photolysis was 50%, indicating that P=S bond easily breaks first during photolysis and photocatalysis. The poor recoveries of ionic byproducts and TOC from photolysis and photocatalysis indicate the presence of other organic intermediates during reactions. The formation of organic intermediates were identified during reactions using GC/MS and LC/MS/MS, and the main degradation products were diazoxon, and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMP), respectively. Finally, the acute 48-hr toxicity test using Daphnia magna were employed to measure the toxicity reduction during photocatalysis of degradation. The results showed that the toxicity increased until 180 min of the photocatalysis reaction (from EC$_{50}$ (%) of 69.6 to 13.2%), however, acute toxicity completely disappeared (>100%) after 360 min. The toxicity results showed that the intermediates from photocatalysis such as diazoxon were more toxic than diazinon itself, however these intermediates can be degraded or mineralized with further reaction.

Simultaneous Determination of Three Compounds in Ejung Tang by HPLC-DAD and LC-ESI-MS (HPLC를 이용한 이중탕 중 3종 활성성분의 동시분석법 확립)

  • Lee, Bo-Hyoung;Ma, Jin-Yeul;Weon, Jin-Bae;Yang, Hye-Jin;Yun, Bo-Ra;Ma, Choong-Je
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • An accurate and sensitive analysis method was established for simultaneous determination of three bioactive compounds (glycyrrhizin, 6-gingerol and ginsenoside Rg3) in the Ejung Tang with high-performance liquid chromatography (HPLC)-photodiode array detection (DAD)-electrospray ionization (ESI)-Mass spectrometry (MS). The optimizing chromatographic separations a were acquired by an $C_{18}$ column ($5{\mu}m$, $4.6I.D{\times}250mm$, SHISHEDO) using gradient elution with water comprising 0.1% TFA(trifluoroacetic acid) and acetonitrile at a performing temperature of $35^{\circ}C$. Flow rate was 1.0 ml/min. A detection UV wavelength set at 205 nm and 250 nm. The three compounds were identified by electrospray ionization mass spectrometry. All calibration curves indicated great linear regression within test ranges ($R^2>0.9997$). The established method provided acceptable precision and accuracy. The relative standard deviations (RSDs) of intra-day and inter-day were less than 2.00% and 3.00%, respectively. The recoveries were found to range from 94.49 to 101.10% for the three compounds analyzed. These results showed that this method was effective and reliable for quality control of Eiung-Tang.

Monitoring of Pesticides in the Yeongsan and Seomjin River Basin (영산강 및 섬진강 수계 중 농약 분포 조사)

  • Lee, Young-Jun;Choi, Jeong-Heui;Kim, Sang Don;Jung, Hee-Jung;Lee, Hyung-Jin;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • BACKGROUND: A lasting release of low levels of persistence chemicals including pesticides and pharmaceuticals into river has a bad influence on aquatic ecosystems and humans. The present study monitored pesticide residues in the Yeongsan and Seomjin river basins and their tributaries as a fundamental study for water quality standard of pesticides.METHODS AND RESULTS: Nine pesticides(aldicarb, carbaryl, carbofuran, chlorpyrifos, 2,4-D, MCPA, methomyl, metolachlor, and molinate) were determined from water samples using SPE-Oasis HLB(pH 2) and LC/MS/MS. Validation of the method was conducted through matrix-matched internal calibration curve, method detection limit(MDL), limit of quantification(LOQ), accuracy, precision, and recovery. MDLs of all pesticides satisfied the GV/10 values. Linearity(r2) was 0.9965- 0.9999, and a percentage of accuracy, precision, and recovery was 89.4-113.6%, 3.1-14.0%, and 90.8-106.2%, respectively. All pesticides exclusive of aldicarb were determined in the river samples, and there was a connection between the positive monitoring results and agricultural use of the pesticides.CONCLUSION: Monitoring outcomes of the present study implied that pesticides were a possible non-point pollutant source in the Yeongsan and Seomjin river basins and tributaries. Therefore, it is required to produce and accumulate more monitoring results on pesticides in river waters to set water quality standards, finally to preserve aquatic ecosystems.

Protective Effects of Cellular Membrane and Component Analysis of Polygonum aviculare Extracts (마디풀 추출물의 세포 보호 효과 및 주성분 분석)

  • Park, Soo Nam;Kim, Min-Ji;Kim, Su Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • In this study, the antioxidative effects and component analysis of Polygonum aviculare (P. aviculare) extracts were investigated. The ethyl acetate and the aglycone fraction from P. aviculare extracts were more active than (+)-${\alpha}$-tocopherol and $\small{L}$-ascorbic acid, which are known as strong antioxidants for their antioxidative activity by the DPPH method and chemiluminescence assay. The cellular protective effects of fractions of P. aviculare on the rose-bengal sensitized photohemolysis of human erythrocytes, increased in a concentration dependent manner ($1-10{\mu}l$). In particular, the ethyl acetate fraction at a concentration of $10{\mu}l$ showed the most prominent protective effect among all the extracts (${\tau}_{50}$, 314.70 min). TLC and HPLC chromatogram of the ethyl acetate fraction of P. aviculare extracts revealed 3 main bands (PA8, PA5, PA6) and peaks (peak 1, peak 2, peak 3), which were identified as myricetin-3-O-rhamnoside (myricitrin, PA8, peak 1), quercetin-3-${\alpha}$-rhamnoside (quercitrin, PA6, peak 3) by LC/ESI-MS/MS and $^1H$-NMR respectively. These results indicate that fractions from P. aviculare could be applicable to new functional cosmetics as antioxidants.

Soyasaponins from Soybean Flour Medium for the Liquid Culture of Ganoderma applanatum

  • Lee, So-Young;Kim, Ju-Sun;Shim, Sang-Hee;Kang, Sam-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3650-3654
    • /
    • 2011
  • Two new unusual soyasaponins named 6"-O-methyldehydrosoyasaponin I(7) and desglucosylsoyasaponin $A_1$ (10) along with eight known saponins, dehydrosoyasaponin IV (1), dehydrosoyasaponin III (= impatienoside A) (2), soyasaponin III (3), dehydrosoyasaponin II (= soyasaponin Bg) (4), soyasaponin II (5), dehydrosoyasaponin I (= soyasaponin Be) (6), soyasaponin I (8), and kudzusaponin $SA_3$ (9), were isolated as their methyl esters and identified from the liquid culture of G. applanatum. Their structures were determined by chemical and spectroscopic analyses including 1D- and 2D-NMR as well as by comparison of their spectroscopic data with those of the reported in literatures. Although dehydrosoyasaponin IV was identified by LC-MS/MS method from soy protein isolate, this is the first report of the isolation of this compound. Dehydrosoyasaponin III (2) and kudzusaponin $SA_3$ (9) were also isolated for the first time from soybean. The presence of soyasaponins in Ganoderma species seems to be unusual feature. Thus, we presumed that compounds 1-10 might all be derived from the defatted soybean flour which was added to the culture medium as a nitrogen source.