Browse > Article
http://dx.doi.org/10.4014/jmb.1105.05011

Wewakamide A and Guineamide G, Cyclic Depsipeptides from the Marine Cyanobacteria Lyngbya semiplena and Lyngbya majuscula  

Han, Bingnan (Department of Ocean Science and Engineering, Zhejiang University)
Gross, Harald (Institute for Pharmaceutical Biology, University of Bonn)
Mcphail, Kerry L. (College of Pharmacy, Oregon State University)
Goeger, Doug (College of Pharmacy, Oregon State University)
Maier, Claudia S. (Department of Chemistry, Oregon State University)
Gerwick, William H. (Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 930-936 More about this Journal
Abstract
Two new cyclic depsipeptides wewakamide A (1) and guineamide G (2) have been isolated from the marine cyanobacterium Lyngbya semiplena and Lyngbya majuscula, respectively, collected from Papua New Guinea. The amino and hydroxy acid partial structures of wewakamide A and guineamide G were elucidated through extensive spectroscopic techniques, including HR-FABMS, 1D $^1H$ and $^{13}C$ NMR, as well as 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The sequence of the residues of wewakamide A was determined through a combination of ESI-MS/MS, HMBC, and ROESY. Wewakamide A possesses a ${\beta}$-amino acid, 3-amino-2-methylbutanoic acid (Maba) residue, which has only been previously identified in two natural products, guineamide B (3) and dolastatin D (4). Although both new compounds (1,2) showed potent brine shrimp toxicity, only guineamide G displayed significant cytotoxicity to a mouse neuroblastoma cell line with $LC_{50}$ values of 2.7 ${\mu}M$.
Keywords
Lyngbya semiplena; Lyngbya majuscula; cyclic depsipeptides; wewakamide A and guineamide G;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Han, B., D. Goeger, C. S. Maier, and W. H. Gerwick. 2005. The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem. 70: 3133-3139.   DOI   ScienceOn
2 Han, B., K. L. McPhail, A. Ligresti, V. Di Marzo, and W. H. Gerwick. 2003. Semiplenamides A-G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Nat. Prod. 66: 1364-1368.   DOI   ScienceOn
3 Han, B. N., H. Gross, D. E. Goeger, S. L. Mooberry, and W. H. Gerwick. 2006. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 69: 572-575.   DOI   ScienceOn
4 Han, B. N., K. L. McPhail, H. Gross, D. E. Goeger, S. L. Mooberry, and W. H. Gerwick. 2005. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron 61: 11723-11729.   DOI   ScienceOn
5 Han, B. N., U. M. Reinscheid, W. H. Gerwick, and H. Gross. 2011. The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods. J. Molec. Struct. 989: 109-113.   DOI
6 Desikachary, T. V. 1957. Electron microscope studies on diatoms. J. R. Microsc. Soc. 76: 9-36.
7 Tan, L. T., T. Okino, and W. H. Gerwick. 2000. Hermitamides A and B, toxic malyngamide-type natural products from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 63: 952-955.   DOI   ScienceOn
8 Jones, A. C., E. A. Monroe, E. B. Eisman, L. Gerwick, D. H. Sherman, and W. H. Gerwick. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat. Prod. Rep. 27: 1048-1065.   DOI   ScienceOn
9 Liu, Y., B. K. Law, and H. Luesch. 2009. Apratoxin A reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol. Pharmacol. 76: 91-104.   DOI   ScienceOn
10 Manger, R. L., L. S. Leja, S. Y. Lee, J. M. Hungerford, Y. Hokama, R. W. Dickey, et al. 1995. Detection of sodium channel toxins: Directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. J. AOAC Int. 78: 521-527.
11 Tan, L. T., N. Sitachitta, and W. H. Gerwick. 2003. The guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 66: 764-771.   DOI   ScienceOn
12 Simmons, T. L., E. Andrianasolo, K. McPhail, P. Flatt, and W. H. Gerwick. 2005. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4: 333-342.
13 Meyer, B. N., N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin. 1982. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45: 31-34.   DOI
14 Simmons, T. L., R. C. Coates, B. R. Clark, N. Engene, D. Gonzalez, E. Esquenazi, et al. 2008. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105: 4587-4594.   DOI   ScienceOn
15 Sone, H., T. Nemoto, H. Ishiwata, M. Ojika, and K. Yamada. 1993. Isolation, structure, and synthesis of dolastatin-D, a cytotoxic cyclic depsipeptide from the sea hare Dolabella auricularia. Tetrahedr. Lett. 34: 8449-8452.   DOI   ScienceOn
16 Tan, L. T. 2007. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979.   DOI   ScienceOn
17 Nagle, D. G., Y. D. Zhou, F. D. Mora, K. A. Mohammed, and Y. P. Kim. 2004. Mechanism targeted discovery of antitumor marine natural products. Curr. Med. Chem. 11: 1725-1756.   DOI   ScienceOn
18 Nunnery, J. K., E. Mevers, and W. H. Gerwick. 2010. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 21: 787-793.   DOI   ScienceOn