• 제목/요약/키워드: 2 degrees of freedom

검색결과 411건 처리시간 0.027초

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Beating phenomena in spacecraft sine testing and an attempt to include the sine sweep rate effect in the test-prediction

  • Nali, Pietro;Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.197-209
    • /
    • 2016
  • The Spacecraft (S/C) numerical sine test-predictions are usually performed through Finite Element Method (FEM) Frequency Response Analysis (FRA), that is the hypothesis of steady-state responses to harmonic excitation to the S/C base is made. In the test practice, the responses are transient and may be significantly different from those predicted through FRA. One of the most significant causes of discrepancy between prediction and test consists in the beating phenomena. After a brief overview of the topic, the typical causes of beating are described in the first part of the paper. Subsequently, focus is made on the sine sweep rate effect, which often leads to have beatings after the resonance of weakly damped modes. In this work, the approach illustrated in the literature for calculating the sine sweep rate effect in the case of Single-Degree-Of-Freedom (SDOF) oscillators is extended to Multi-Degrees-Of-Freedom (MDOF) systems, with the aim of increasing the accuracy of the numerical sine test-predictions. Assumptions and limitations of the proposed methodology are detailed along the paper. Several assessments with test results are discussed and commented.

새로운 6자유도 병렬 매니퓰레이터의 기구학 해석 (Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator)

  • 변용규;조형석
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

수명분포가 자유도에 의존한 카이제곱분포를 따르는 무한고장 NHPP 소프트웨어 신뢰성 모형에 관한 비교연구 (A Comparative Study on the Infinite NHPP Software Reliability Model Following Chi-Square Distribution with Lifetime Distribution Dependent on Degrees of Freedom)

  • 김희철;김재욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.372-379
    • /
    • 2017
  • 소프트웨어 개발과정동안 소프트웨어 신뢰성 요인은 매우 기본적인 사항이다. 소프트웨어 고장파악을 위한 무한고장 비동질적인 포아송 과정을 이용할 때 고장발생률 혹은 위험함수가 일정하거나 증가 또는 감소하는 속성을 가진다. 본 논문에서는 소프트웨어 신뢰 성능에 관한 효율성을 비교하는 자유도에 의존하는 카이제곱 분포를 적용한 신뢰성 모형을 제안하였다. 효율적인 모형을 평가하기 위하여 평균제곱오차(MSE)와 결정계수($R^2$)를 이용하고 최우추정법과 수치 해석적 방법을 사용하여 모수추정 알고리즘이 수행되었다. 제안하는 카이제곱분포의 자유도를 이용한 신뢰성 모형을 위해 실제 고장 간격 데이터를 사용한 고장 성능 분석이 적용되었다. 고장데이터 분석은 카이제곱분포의 자유도에 근거한 강도함수를 기준으로 비교되었다. 데이터 신뢰성을 확인하기 위하여 라플라스 추세검정이 적용되었다. 본 연구에 제안된 카이제곱분포의 자유도는 다양한 고장현상을 표현 할 수 있기 때문에 (결정계수가 90% 이상), 신뢰성 분야에서 활용 할 수 있는 모형으로 활용 할 수 있다. 이 연구 결과를 적용하면 소프트웨어 개발 설계자에게 다양한 자유도를 적용하여 소프트웨어 고장패턴을 예측함으로서 효율적인 모형을 개발하는데 표준 지침으로 적용 할 수 있다.

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Impelmentation of 2-DOF Controller Using Immune Algorithms

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1531-1536
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, A general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, The immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

2자유도 병렬 기구의 비교 연구 : 작업영역 최적화 및 기구학적 성능 (Comparison Study of 2-D OF Parallel Mechanisms: Workspace Optimization and Kinematic Performance)

  • 남윤주;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1564-1572
    • /
    • 2006
  • This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix of each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. .Finally, the kinematic optimization of the mechanisms is performed with regards to their dexterity, stiffness and space utilization. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields.