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Abstract – In this paper the structure of 2-DOF controller based 
on artificial immune network algorithms has been suggested for 
nonlinear system. Up to present time, a number of structures of 
the 2-DOF controllers are considered as 2-DOF (2-Degrees Of 
Freedom) control functions. However, A general view is 
provided that they are the special cases of either the state 
feedback or the modification of PID controllers. On the other 
hand, The immune network system possesses a self organizing 
and distributed memory, also it has an adaptive function by feed 
back law to its external environment and allows a PDP (parallel 
distributed processing) network to complete patterns against the 
environmental situation, since antibody recognizes specific 
antigens which are the foreign substances that invade living 
creatures. Therefore, it can provide optimal solution to external 
environment. Simulation results by immune based 2-DOF 
controller reveal that immune algorithm is an effective 
approach to search for 2-DOF controller. 
 

I. INTRODUCTION 
 

In recently years, combined learning-based artificial 
intelligence (AI) such as neural network, fuzzy control, 
genetic algorithm, immune network structures have been 
interested in studying much attention for their robustness and 
flexibility against a dynamically changing system or complex 
system, since conventional artificial intelligent systems based 
on a functional decomposition, leading to a so-called 
“sense-model-plan-action” cycle have been criticized on 
many grounds over the last decade [1] – [3].  

They are used extensively in industry in such diverse 
applications as fault prediction, fault diagnosis, supervisory 
control, energy management, production management, 
software engineering, and among others [3]. 

  It is a challenge in control and computer communities to 
explore novel control strategies and philosophies for complex 
industrial processes. In complex processes in practice, the 
range of uncertainty may be substantially larger than can be 
tolerated by crisp algorithms of adaptive and robust control. 
What are known as " intelligent" control techniques [6] are 
useful here.  

The application of intelligent system technologies in 
industrial control has been developing into an emerging 
technology, so-called ‘Industrial intelligent control’. This 
technology is highly multi-disciplinary and rooted in systems 
control, operations research, artificial intelligence, 
information and signal processing, computer software and 

production background [8-9].  
Chronologically, fuzzy logic was the first technique of 

intelligent systems. Neural, neuro-fuzzy and evolutionary 
system and their derivatives followed later. Each technique is 
offering new possibilities and making intelligent system even 
more versatile and applicable in an ever-increasing range of 
industrial applications. 

Over the past decade or so, significant advances have been 
made in two distinct technological area: fuzzy logic (FL) and 
neural networks (NNs) [1] – [3]. There has been considerable 
interest in the past few years in exploring the applications of 
fuzzy neural network (FNN) systems, which combine the 
capability of fuzzy reasoning to handle uncertain information 
and the capability of artificial networks to learn from 
processes, to deal with nonlinearities and uncertainties of 
control systems. 

On the other hand, biological information processing 
systems such as human beings have many interesting 
functions and are expected to provide various feasible ideas 
to engineering fields, especially intelligent control or robotics 
[1] – [4]. Biological information in living organisms can be 
mainly classified into the following four systems: brain 
nervous, genetic system, endocrine system, and immune 
system. Among this system, brain nervous and genetic 
systems have already been applied to engineering fields by 
modeling as neural network and genetic algorithms [8], they 
have been widely used in various fields. However, Only a 
little attention has been paid to application of the other 
systems, not to mention their important characteristics and 
model. The purpose of this paper is to propose the use of 
artificial immune algorithms as implementation of 2-DOF 
(2-Degrees Of Freedom) control system [6] – [8]. 

 
II. IMMUNE ALGORITHMS FOR THE PID 

CONTROLLER 
 
The immune system is interested in data mining, control 
system application [6] – [10], intelligent system combined 
with fuzzy or neural network [5], a multi-agent system. It is 
characterized with a large number and composed of variety of 
components distributed throughout the body. Individual 
actions of vast numbers of cells in immune system, and their 
interactions with even larger numbers of molecular mediators, 
determine the course of an infection. This distributed 
collection of agents protects organisms against a wide variety 
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of attacks. It is important not only for learning to apply for 
control engineering, but also for understanding control of 
distributed systems in general.  

The characteristics of Cell action are governed largely by 
molecular signals. Each cell represents on its surface an 
enormous number of receptors for a variety of different 
chemicals. These receptors bind to extracellular molecules, or 
molecules on the surfaces of other cells. Which subsets of 
receptors are bound determines whether cells die, divide, 
move, differentiate, or produce molecules for secretion or 
expression determines whether a cell is listening for a 
specific kind of information [8]. 

Intracellular signaling mechanisms connected to these 
receptors determine the response to each such signal. In 
addition, interactions between intracellular signaling 
pathways cause the cell’s response to be a function of 
combinations of external signals. 

Some paper explained how certain kinds of molecular 
signals can provide feedback to tune the immune system 
response. In addition to eliminating an invading pathogen, an 
immune response often causes incidental damage to the host. 
Recruitment of immune system effectors to an infected area 
results in inflammation, with negative effects on blood 
circulation and local tissue integrity. Toxins required to kill 
certain pathogens may also damage host cells.  

Antibody in the immune system should kill dangerous 
antigens but should not harm the host. They showed how 
chemical signals indicating when antigens were being killed 
and when host cells were being damaged could be used to 
adjust the response so as to minimize both kinds of damage. 
Here, we expand on this earlier work by using genetic 
algorithms to explore what forms of feedback information are 
most useful in the model system. 
 One of modeling the immune system is to derive a set of 
differential equations that describe the changes in 

concentrations of the relevant cell and molecule types over 
time. These equations describe the average behavior of the 
system, assuming ideal mixing. 
 Minimal model includes one kind of antigen P and one kind 
of immune system effector F, which kills antigens by 
secreting a toxic chemical T (such as nitric oxide). T damages 
host cells as well as killing antigens. This is a simplified 
model of the dual nature of antigen responses. If antigen 
cause damage at rateα , and the noxious chemical causes 
damage at rate β , then the total damage done during an 
immune response is given as the following equation: 
 

TP∫ +=Γ βα                   (1) 

 

Fig.2. Block diagram for immune based feedback system. 
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The concentration of effectors grows in proportion to 
antigen levels (with coefficient η ) up to some saturation 

limit maxF  and decays at a fixed rateµ : 

F
F
FPF

dt
dF µη −








−=

max

1       (2) 

T is secreted by effectors at rate ζ  and decays at rate λ  

TF
dt
dT λζ −=                  (3) 

Antigens reproduce at fixed rate δ . For antigen killing, a 
“mass action” encounter rate PF is assumed and the killing 
effectiveness of an encounter is taken proportional to T, with 
coefficientσ . 

PFTP
dt
dP σδ −=               (4) 

If the secretion rate ζ  is too low, the antigen will not be 
controlled and will do too much damage; if it is too high, the 
amount of incidental damage by the immune response will be 
high. An optimal value of ζ  is one resulting in the 
minimum damage to the system. Since this optimal value is 
dependent on antigen virulence and susceptibility to effectors, 
adaptive secretion rate will perform well in all situations. 

Reference [11] represented that the immune response, and 
in particular the secretion rate of T, should be controlled by 
feedback indicating whether damages is occurring to the host, 
and whether effectors are successful in eliminating antigens.   

This information could be represented by two chemicals: 
Φ , created during antigens killing, and Ψ , created during 
host damage. Φξ  and Ψξ  are the respective rates of 
production of these chemicals.  

Each chemical also has a fixed decay rate, 1λ and 2λ : 
 

( ) Φ−=Φ
Φ 1λσξ PFN

dt
d

        (5) 

( ) Ψ−+=Ψ
Ψ 2λβαξ TP

dt
d

      (6) 

 
Ψ  is composed of damage done by both pathogens and 
the immune response. An estimation concentration of 
antibody for immune response is given by: 
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Fig. 3 shows the Eq. (6). 
 
- Antibody concentration: iδ  
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L

k
ijji kQkPm )()(  

- Suppression constant: ∑
=

⊕=
L

k
kiik kQkPm

1

)()(  

- L: bit range in antibody 
- )(kPj  : kth ideotope value in jth antibody  

- )(kQi : kth bit value of ith paratope 
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- )(kR : kth bit value of epitope in antibody 
-   : exclusive sum (“1” or “0”)  
 
 
Antibody concentration is computed by the Eq.(8) or the 

Eq (9): 
 

goal
i

obstacle
ii ηδδη +−=∆ )1(           (9) 

 
Hence, antibody’s concentration is calculated by the user 

based on the control requirement condition of the given plant. 
The problem at hand is then of a combinatorial nature, with 
optimization phases. The degree of match between the 
molecules is termed affinity. The better the match, the higher 
the affinity, and thus the stronger the binding.  

 
III. EVAIUATION FOR CONTROL SYSTEM 

 
A. Antibody calculation procedure 
Procedure for antibody concentration and antigen are 
represented by the Fig. 4 and Fig. 5. 
 
Gain is computed by prosecure A, B. The fitness is given by 
the following. 
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Fig. 3. Block diagram of antibody concentration. 
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- 321 ,, mmm : weight constant (+) 
- fT : Overshoot value (1; overshoot < the requirement 
value, real overshoot value; overshoot value >requirement 
overshoot) 
- nT : Delay time constant (no delay time plant; fT , 
delay time; real delay time value) 
Hence, PI controller is designed by learning of editope, 
paratope. 

 
IV. SIMULATION AND DISCUSSION 

 
Fig. 6 shows how the secretion rate and its contributing terms 
vary over the course of the simulation for control system. The 
exact values and forms of the above equations are not as 
important as the understanding of which kinds of feedback 
signals have some evolutionary advantage and why. These 
examples show us how feedback in the immune system could 

work, and the kinds of effects different signals might have on 
the developing response. They suggest certain mechanisms to 
look for in the immune systems of real organisms. 

The above tests are just a beginning; they were all 
performed with a single set of parameters describing the 
characteristics of the pathogen and effectors. 

In other words, our model immune system was only tested 
against a single kind of antigen, under one set of initial 
conditions. To evaluate whether the adaptive secretion 
strategies described above are truly adaptive, a wider range of 
antigen parameters and initial conditions must be explored. 
Ideally, individuals in the GA would be challenged with 
multiple antigens of varying virulence. The fitness measure 
would then be a composite of results from each individual 
‘infection’; this would ensure that the best individuals used 
broadly applicable feedback strategies. 
 Another important area for future research is in applying the 
results of such a survey to spatial models. 
Differential equations only approximate the dynamics of a 
spatially distributed system of discrete agents. It is unlikely 
that the exact parameter values will map directly to 
agent-based systems. However, they do provide a measure of 
the relative importance of different signals and interactions.  

 
Figs. 7-14 shows response to variation of each parameter. Fig. 
7 is response of lambda=0, alpha=1, k_sti=1, k_sup=0.1 and 
Fig. 8 is shows response on lambda=1, alpha=1, k_sti=1, 
k_sup=0.1. 

 
 

CONCLUSION 
 

This paper suggested the feasibility design of 2-DOF 
controller by immune network algorithms and represented 
response to the variation of parameter in immune network. If 
this parameter is more verified in each case of plant, the 
results of simulation shows it can be used for the 2-DOF PID 
controller. Since the structure of feedack immune network is 
the similar a type of 2-DOF, it will be used for the nonlinear 
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system if tuning problem is proven. 
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