• Title/Summary/Keyword: 2차원 영상의 3차원 변환

Search Result 263, Processing Time 0.026 seconds

The Structure of Reversible DTCNN (Discrete-Time Celluar Neural Networks) for Digital Image Copyright Labeling (디지털영상의 저작권보호 라벨링을 위한 Reversible DTCNN(Discrete-Time Cellular Neural Network) 구조)

  • Lee, Gye-Ho;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.532-543
    • /
    • 2003
  • In this paper, we proposed structure of a reversible discrete-time cellular neural network (DTCNN) for labeling digital images to protect copylight. First, we present the concept and the structure of reversible DTCNN, which can be used to generate 2D binary pseudo-random images sequences. We presented some, output examples of different kinds of reversible DTCNNs to show their complex behaviors. Then both the original image and the copyright label, which is often another binary image, are used to generate a binary random key image. The key image is then used to scramble the original image. Since the reversibility of a reversible DTCNN, the same reversible DTCNN can recover the copyright label from a labeled image. Due to the high speed of a DTCNN chip, our method can be used to label image sequences, e.g., video sequences, in real time. Computer simulation results are presented.

The Ultrasonic Image Processing by Peak Value, Time Average and Depth Profile Technique in High Frequency Bandwidth (고주파대역에서 피크값, Time Average 및 Depth Profile 초음파 영상처리)

  • 이종호
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.120-127
    • /
    • 1998
  • In this paper, ultrasonic images of 25MHz bandwidth were acquired by applying peak value variation, time average and depth profile algorithm to acoustic microscopy and its performance was compared and analysed with each other. In the time average algorithm, total reflecting pulse wave from a spot on the coin was converted to digital data in time domain and average value of the converted 512 data was calculated in computer. Time average image was displayed by gray levels colour of acquired N x N matrix average data in the scanning area on the sample. This technique having smoothing effects in time domain make developed an ultrasonic image on a highly scattering area. In depth profile technique, time difference between the reference and the reflected signal was detected with minimum resolution performance of 2ns, thus we can acquired real 3 dimensional shape of the scanning area in accordance with relative magnitude. Through these experiments, peak value, time average and depth profile images were analysed and advantages of each algorithm were proposed.

  • PDF

Stereoscopic Video Conversion Based on Image Motion Classification and Key-Motion Detection from a Two-Dimensional Image Sequence (영상 운동 분류와 키 운동 검출에 기반한 2차원 동영상의 입체 변환)

  • Lee, Kwan-Wook;Kim, Je-Dong;Kim, Man-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1086-1092
    • /
    • 2009
  • Stereoscopic conversion has been an important and challenging issue for many 3-D video applications. Usually, there are two different stereoscopic conversion approaches, i.e., image motion-based conversion that uses motion information and object-based conversion that partitions an image into moving or static foreground object(s) and background and then converts the foreground in a stereoscopic object. As well, since the input sequence is MPEG-1/2 compressed video, motion data stored in compressed bitstream are often unreliable and thus the image motion-based conversion might fail. To solve this problem, we present the utilization of key-motion that has the better accuracy of estimated or extracted motion information. To deal with diverse motion types, a transform space produced from motion vectors and color differences is introduced. A key-motion is determined from the transform space and its associated stereoscopic image is generated. Experimental results validate effectiveness and robustness of the proposed method.

TIP Technique using the OpenGL ES for android platform (OpenGL ES 를 이용한 Android Platform 에서의 TIP 기술)

  • Lee, Junho;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.330-333
    • /
    • 2011
  • TIP 기술은 2D 그림 또는 한 장의 사진으로부터 기하정보를 추출하여 3 차원 입체 효과를 만들어 영상 내부를 네비게이션할 수 있는 기술로써, 게임, 엔터테인먼트, 교육, 홍보 등 다양한 분야에서 요구되는 주요기술이다. 본 논문에서는 최근 대두되고 있는 스마트 device 의 platform 가운데 하나인 android platform 상에서의 OpenGL ES Library 를 이용한 TIP 기술 적용 및 구현 기술을 제안한다. 제안 방법은 전경객체의 추출이 어려운 상황을 감안하여 보다 사실적 장면 구성이 용이하도록 사용자의 선택에 의한 소실점을 이용하고, OpenGL ES Library 를 이용하여 3D 배경 모델을 획득하고, 이미지를 텍스쳐 매핑하여 3D 가상공간을 완성한 후 카메라의 시점 변환을 통해 이미지 내부를 네베게이션할 수 있도록 한다. 실험영상은 android platform 상의 device 에서 촬영한 이미지를 사용하고, android 2.1 및 OpenGL ES 1.0 기반으로 구축함으로써, 제안 기술을 다양한 android platform smart device 에서 적은 비용과 시간으로 응용 개발에 효과적으로 적용 가능하도록 구현하였다.

True Three-Dimensional Cone-Beam Reconstruction (TTCR) Algorithm - Transform Method from Parallel-beam (TTR) Algorithm - (원추형 주사 방식의 3차원 영상 재구성(TTCR) 알고리즘 - 평행주사 방식(TTR) 알고리즘의 좌표변환 -)

  • Lee, S.Z.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.55-59
    • /
    • 1989
  • A true three-dimensional cone-beam reconstruction (TTCR) algorithm for the complete sphere geometry is derived, which is applicable to the direct volume image reconstruction from 2-D cone-beam projections. The algorithm is based on the modified filtered backprojection technique which uses a set of 2-D space-invariant filters and is derived from the previously developed parallel-beam true three-dimensional reconstruction(TTR) algorithm. The proposed algorithm proved to be superior in spatial resolution compared with the parallel-beam TTR algorithm.

  • PDF

Inspection of Coin Surface Defects using Multiple Eigen Spaces (다수의 고유 공간을 이용한 주화 표면 품질 진단)

  • Kim, Jae-Min;Ryoo, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2011
  • In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.

Rendering Quality Improvement Method based on Depth and Inverse Warping (깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-724
    • /
    • 2021
  • The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.

Face Recognition Using Local Statistics of Gradients and Correlations (그래디언트와 상관관계의 국부통계를 이용한 얼굴 인식)

  • Ju, Yingai;So, Hyun-Joo;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Until now, many face recognition methods have been proposed, most of them use a 1-dimensional feature vector which is vectorized the input image without feature extraction process or input image itself is used as a feature matrix. It is known that the face recognition methods using raw image yield deteriorated performance in databases whose have severe illumination changes. In this paper, we propose a face recognition method using local statistics of gradients and correlations which are good for illumination changes. BDIP (block difference of inverse probabilities) is chosen as a local statistics of gradients and two types of BVLC (block variation of local correlation coefficients) is chosen as local statistics of correlations. When a input image enters the system, it extracts the BDIP, BVLC1 and BVLC2 feature images, fuses them, obtaining feature matrix by $(2D)^2$ PCA transformation, and classifies it with training feature matrix by nearest classifier. From experiment results of four face databases, FERET, Weizmann, Yale B, Yale, we can see that the proposed method is more reliable than other six methods in lighting and facial expression.

Projective Reconstruction Method for 3D modeling from Un-calibrated Image Sequence (비교정 영상 시퀀스로부터 3차원 모델링을 위한 프로젝티브 재구성 방법)

  • Hong Hyun-Ki;Jung Yoon-Yong;Hwang Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.113-120
    • /
    • 2005
  • 3D reconstruction of a scene structure from un-calibrated image sequences has been long one of the central problems in computer vision. For 3D reconstruction in Euclidean space, projective reconstruction, which is classified into the merging method and the factorization, is needed as a preceding step. By calculating all camera projection matrices and structures at the same time, the factorization method suffers less from dia and error accumulation than the merging. However, the factorization is hard to analyze precisely long sequences because it is based on the assumption that all correspondences must remain in all views from the first frame to the last. This paper presents a new projective reconstruction method for recovery of 3D structure over long sequences. We break a full sequence into sub-sequences based on a quantitative measure considering the number of matching points between frames, the homography error, and the distribution of matching points on the frame. All of the projective reconstructions of sub-sequences are registered into the same coordinate frame for a complete description of the scene. no experimental results showed that the proposed method can recover more precise 3D structure than the merging method.

Intra Prediction Method by Quadric Surface Modeling for Depth Video (깊이 영상의 이차 곡면 모델링을 통한 화면 내 예측 방법)

  • Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, we propose an intra-picture prediction method by a quadratic surface modeling method for depth video coding. The pixels of depth video are transformed to 3D coordinates using distance information. A quadratic surface with the smallest error is found by least square method for reference pixels. The reference pixel can be either the upper pixels or the left pixels. In the intra prediction using the quadratic surface, two predcition values are computed for one pixel. Two errors are computed as the square sums of differences between each prediction values and the pixel values of the reference pixels. The pixel sof the block are predicted by the reference pixels and prediction method that they have the lowest error. Comparing with the-state-of-art video coding method, simulation results show that the distortion and the bit rate are improved by up to 5.16% and 5.12%, respectively.