• Title/Summary/Keyword: 2온도 모델

Search Result 1,548, Processing Time 0.032 seconds

Analysis of Suspended Solid of Andong and Imha Basin According to the Climate Change (기후변화에 따른 안동·임하호 유역의 부유사량 분석)

  • Lee, Geun-Sang;Kim, Jung-Yeol;Ahn, So-Ra;Sim, Jeong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • This study analyzed the change of flowout and suspend solid in Andong and Imha basin according to the climate change to develop evaluation index about turbid water occurrence possibility and to support the countermeasures for turbid water management using GIS-based Soil and Water Assessment Tools (SWAT). MIROC3.2 hires model values of A1B climate change scenario that were supplied by Intergovernmental Panel on Climate Change (IPCC) were applied to future climage change data. Precipitation and temperature were corrected by applying the output value of 20th Century Climate Coupled Model (20C3M) based on past climate data during 1977 and 2006 and downscaled with Change Factor (CF) method. And future climate change scenarios were classified as three periods (2020s, 2050s, 2080s) and the change of flowout and suspended solid according to the climate change were estimated by coupling modeled value with SWAT model. Flowout and suspended solid of Andong and Imha basin in 2020s, 2050s, and 2080s were simulated as increasing compared with standard year (2006). Also, as the result of seasonal change, flowout and suspended solid of Andong and Imha basin in spring, autumn, and winter showed as increasing compared with standard year. And them of Andong and Imha basin in summer were analyzed as decreasing compared with standard year.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

A Study on the Development of Industrial Clusters in the International Science and Business Belt through the Industrial Clustering Analysis (산업 클러스터링 분석을 통한 국제과학비즈니스벨트의 클러스터 발전 방향 연구)

  • Jung, Hye-Jin;Og, Joo-Young;Kim, Byung-Keun;Ji, Il-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.370-379
    • /
    • 2018
  • The Korean government announced plans for the International Science Business Belt as a spatial area for promoting the linkage between scientific knowledge and commercialization in 2009. R&D and entrepreneurial activities are essential for the success of the International Science Business Belt. In particular, prioritizing the types of businesses is critical at the cluster establishment stage in that this largely affects the features and development of clusters comprising the International Science Business Belt. This research aims to predict the entry and growth of firms that specialize in four industrial clusters, including Big Science Cluster, Frontier Cluster, ICT Cluster, and Bio-Healthcare Cluster. For this purpose, we employ the Swann & Prevezer's industrial clustering model to identify sectors that affect the establishment and growth of industrial clusters in the International Science Business Belt, focusing on ICT, Bio-Healthcare and Frontier clusters. Data was collected from the 2014 Korean Innovation Survey (KIS) and University Alimi for the ICT cluster, 2014 National Bio Industry Survey and University Alimi for the Bio-Healthcare Cluster, and the 2015 National Nano Convergent Industry Survey and Annual Report of Nano Technology for the Frontier cluster. Empirical results show that the ICT service sector, bio process/equipment sector, and Nano electronic sector promote clustering in other sectors. Based on the analysis results, we discuss several policy implications and strategies that can attract relevant firms for the development of industrial clusters.

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

A Simulation Study for Selecting Optimum Position of a Superheater in a Waste Heat Recovery System Integrated with a Large Gasoline Engine (대형 가솔린 엔진의 폐열 회수 장치인 슈퍼히터의 최적 위치선정을 위한 시뮬레이션 연구)

  • Kim, Se Lin;Choi, Kyung Wook;Lee, Ki Hyung;Kim, Ki Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Recently, automotive engineers have paid much attention to waste heat recovery technology as a possible means to improve the thermal efficiency of an automotive engine. A large displacement gasoline engine is generally a V-type engine. It is not cost effective to install two superheaters at each exhaust manifold for the heat recovery purposes. A single superheater could be installed as close to the exhaust manifold as possible for the higher recovery efficiency; however, only half of exhaust gas can be used for heat recovery. On the contrary, the exhaust temperature is decreased for the case where the superheater is installed at a junction of two exhaust tail pipes. With the fact in mind, the optimum position of a single superheater was investigated using simulation models developed from a commercial software package (i.e. AMESim). It was found that installing the superheater near the exhaust manifold could recover 3.8 kW more from the engine exhaust despite utilizing only half of the exhaust mass flow. Based on this result, the optimum layout of an automotive waste heat recovery system was developed and proposed in this paper.

The Study on the Common Definition of Knowledge and its Development Relation -Focused on the General Information Systems, Knowledge Management, DSS and EIS- (지식의 공통적 정의와 발전적 연관 관계에 관한 연구 -일반적 정보시스템과 지식경영, DSS, EIS를 중심으로-)

  • Roh, Jeong-Ran
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.2
    • /
    • pp.239-259
    • /
    • 2004
  • The purpose of this study is to review the established research practices and managerial methods on the range of Knowledge that have been independently studied from the conventional information system (libraries) and the managerial information system (MIS, DSS and EIS) within the quantitative and the non-quantitative perspective. The information systems were developed through their own purpose since the 1950s and these days the corporate environments have become integrated due to the rapid creation and expansion of information. Therefore, to make fast decisions in this situation it is appropriate that these two systems, Library and the managerial information system, should be dealt within the same category. In other words, not only the quantitative data that become main sources of DSS or EIS, but also the qualitative data such as the text documents, video and audio data, which have been managed in the libraries and information centers and not extracted from the former, can be used as the new knowledge source. Also BSS/EIS can provide the splendid infrastructure for Knowledge Management(KM) while libraries/information centers manage the comprehensive range of explicit and tacit knowledge, which can be a facilitator or main driver for KM.

Design and Implementation of Library Information System Using Collective Intelligence and Cloud Computing (집단지성과 클라우드 컴퓨팅을 활용한 도서관 정보시스템 설계 및 구현)

  • Min, Byoung-Won
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.49-61
    • /
    • 2011
  • In recent, library is considered as an integrated knowledge convergence center that can respond to various requests about information service of users. Therefor it is necessary to establish a novel information system based on information communications technologies of the era. In other words, it is currently required to develop mobile information service available in portable devices such as smart phones or tablet PCs, and to establish information system reflecting cloud computing, SaaS, Annotation, and Library 2.0 etc. In this paper we design and implement a library information system using collective intelligence and cloud computing. This information system can be adapted for the varieties of mobile service paradigm and abruptly increasing amount of electronic materials. Advantages of this concept model are resource sharing, multi-tenant supporting, configuration, and meta-data supporting etc. In addition it can offer software on-demand type user services. In order to test the performance of our system, we perform an effectiveness analysis and TTA authentication test. The average response time corresponding to variance of data reveals 0.692 seconds which is very good performance in timing effectiveness point of view. And we detect maturity level-3 or 4 authentication in TTA tests such as SaaS maturity, performance, and application programs.

Pyrolysis Characteristics of Sawdust and Rice Husk (톱밥과 왕겨의 열분해 특성 연구)

  • Park, Dong Kyoo;Seo, Myung Won;Goo, Jeong Hoi;Kim, Sang Done;Lee, See Hoon;Lee, Jae Goo;Song, Byung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.415-423
    • /
    • 2007
  • Pyrolysis characteristics of sawdust and rice husk as biomass resources in a thermogravimetric analysis were determined. Experiments were carried out with a linear heating rate under inert atmosphere of $N_2$ gas. Pyrolysis of the biomass can be classified as a lower temperature reaction zone where the major component of holocellulose is thermally decomposed and a high temperature reaction zone where lignin is thermally decomposed. The obtained data was analyzed by the two-step consecutive reaction model. Activation energies of sawdust and rice husk are found to be respectively 82.5 kJ/mol and 85.1kJ/mol in the low temperature zone according to the first order reaction model and 19.7 kJ/mol, 22.0 kJ/mol in the high temperature zone according to the three-way transport model. The reaction rate constant with variation of heating rate can be well predicted by the kinetic compensation relation of Gaur-Reed.

Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite (제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성)

  • Lee, Ji-In;Park, Jong-Ho;Beum, Hee-Tae;Yi, Kwang-Bok;Ko, Chang-Hyun;Park, Sung Youl;Lee, Yong-taek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.768-775
    • /
    • 2010
  • Adsorption dynamics of ethane/ethylene mixture gas and desorption dynamics during the displacement desorption with propane as a desorbent in the column filled with faujasite adsorbent were investigated experimentally and theoretically. The simulation that adopted heat and mass balance and an ideal adsorbed solution theory (IAST) for the multicomponent adsorption equilibrium well predicted the experimental breakthrough curves of the adsorption and desorption. At the adsorption breakthrough experiments, roll-ups of ethane increased as the adsorption pressure increased and the adsorption temperature decreased. During the displacement desorption with propane in the column saturated with ethane/ethylene mixture gas, almost 100% of ethylene was obtained for a certain time interval. The adsorption strength of the desorbent greatly affected the adsorption and re-adsorption dynamics of ethylene. The re-adsorption capacity for ethylene has been greatly reduced when iso-propane, which is stronger desorbent than propane, was used as desorbent. It was found from the simulation that the performance of the displacement desorption process would be superior when the ratio of ${(q_s{\times}b)}_{C_2H_4}/{(q_s{\times}b)}_{C_3H_s}$ was 0.83, that is, the adsorption strengths of ethylene and the desorbent were similar.

Fabrication of Porous Alumina Ceramics by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 알루미나 세라믹스의 제조)

  • Shin, Hyun-Cheol;Cho, Won-Seung;Shin, Seung-Yong;Kim, Jun-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1183-1189
    • /
    • 2002
  • In order to develope the porous alumina ceramics with high strength, the pore characteristics and compressive strength were investigated in terms of relation to the conditions of spark-plasma sintering and the contents of graphite as a pore precursor. Porous alumina bodies were successfully prepared by spark-plasma sintering and burning out graphite in air. High porous bodies were fabricated by sintering at 1000${\circ}C$ for 3 min under a pressure of 30 MPa, heating rate of 80${\circ}C$/min and on-off pulse type of 12:2. For example, alumina bodies prepared by the addition of 10∼30 vol% graphite showed high porosity of 50∼57%. Also, the open porosity increased with graphite content. The relationship between pore characteristics and graphite contents could be explained by percolation model depending on cluster number and size. Porous alumina bodies prepared by the addition of 10∼30 vol% graphite showed the high compressive strength of 55∼200 MPa. This great improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between particles.