Browse > Article

Pyrolysis Characteristics of Sawdust and Rice Husk  

Park, Dong Kyoo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program))
Seo, Myung Won (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program))
Goo, Jeong Hoi (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program))
Kim, Sang Done (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program))
Lee, See Hoon (Korea Institute of Energy Research)
Lee, Jae Goo (Korea Institute of Energy Research)
Song, Byung-Ho (Department of Chemical Engineering, Kunsan National University)
Publication Information
Applied Chemistry for Engineering / v.18, no.5, 2007 , pp. 415-423 More about this Journal
Abstract
Pyrolysis characteristics of sawdust and rice husk as biomass resources in a thermogravimetric analysis were determined. Experiments were carried out with a linear heating rate under inert atmosphere of $N_2$ gas. Pyrolysis of the biomass can be classified as a lower temperature reaction zone where the major component of holocellulose is thermally decomposed and a high temperature reaction zone where lignin is thermally decomposed. The obtained data was analyzed by the two-step consecutive reaction model. Activation energies of sawdust and rice husk are found to be respectively 82.5 kJ/mol and 85.1kJ/mol in the low temperature zone according to the first order reaction model and 19.7 kJ/mol, 22.0 kJ/mol in the high temperature zone according to the three-way transport model. The reaction rate constant with variation of heating rate can be well predicted by the kinetic compensation relation of Gaur-Reed.
Keywords
biomass; pyrolysis; two-step consecutive reaction model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 A. Demirbas, Energy Conv. Manage., 41, 633 (2000)   DOI   ScienceOn
2 R. Bilbao, A. Millera, and J. Arauzo, Thermochimica Acta, 165, 103 (1990)   DOI   ScienceOn
3 T. Cordero, J. M. Rodríguez-Maroto, F. García, and J. J. Rodríguez, Thermochimica Acta, 191, 161 (1991)
4 Kim, S. D., 석탄 에너지 변환 기술, 民音社, 39 (1986)
5 J. J. M. Orfao and F. G. Martins, Thermochimica Acta, 390, 195 (2002)   DOI   ScienceOn
6 L. T. Vlaev, I. G. Markovska, and L. A. Lynbchev, Thermochimica Acta, 406, 1 (2003)   DOI
7 A. Sharma and T. R. Rao, Bioresource Technology, 67, 53 (1999)
8 A. V. Bridgwater, Chem. Eng. J., 4056, 1 (2002)
9 M. Ni, Dennis Y. C. Leung, Michael K. H. Leung, and K. Sumathy, Fuel Processing Technol., 86, 461 (2006)
10 A. W. Coats and J. P. Redfern, J. Polym. Sci., 3, 917 (1965)   DOI
11 K. Raveendran, A. Ganesh, and K. C. Khilar, Fuel, 75, 987 (1996)
12 T. Cordero, J. M. Rodríguez-Maroto, J. Rodríguez-Mirasol, and J. J. Rodríguez, Thermochimica Acta, 164, 135 (1990)
13 A. Demirbas, Energy Conv. Manage., 42, 1357 (2001)   DOI   ScienceOn
14 J. Guo and A. C. Lua, Biomass Bioenergy, 20, 223 (2001)   DOI   ScienceOn
15 M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C. R. Li, T. B, Tang, B. Roduit, J. Malek, and T. Mitsuhashi, Thermochimica Acta, 355, 125 (2000)   DOI
16 A. V. Bridgwater, Fuel, 74, 631 (1995)   DOI   ScienceOn
17 C. D. Doyle, J. Appl. Polym. Sci., 6, 639 (1962)   DOI
18 S. Gaur and T. B. Reed, Biomass Bioenergy, 7, 61 (1994)