• Title/Summary/Keyword: 2단계 축소기법

Search Result 46, Processing Time 0.035 seconds

Study on the Structural System Condensation Using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

Study on the Efficient Dynamic System Condensation (동적 해석의 효율적 축소기법에 관한 연구)

  • Baek, Seung-Min;Kim, Ki-Ook;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.347-352
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. In the first step, the selection of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation. In the second step, the primary degrees of freedom are selected by the sequential elimination method from the degrees of freedom connected to the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system (IIRS) to increase accuracy of the higher modes in the intermediate range. Also, it is possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Finally, numerical examples demonstrate the performance of the proposed method.

Structural Topology Optimization Using Two-level Dynamic Condensation Scheme (2단계 동적 축소법을 적용한 구조물의 위상 최적 설계)

  • Park Soo-Hyun;Kim Hyun-Gi;Cho Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.213-219
    • /
    • 2006
  • Topology optimization problem requires numerous repeated evaluations of objective function and design sensitivity for elements within design domain with various density distributions. The recently proposed two-level condensation scheme(TLCS) is very promising for the construction of reduced system and for an accurate and efficient analysis concerned about eigenvalue and dynamic problems. We used the two-level dynamic condensation scheme for the analysis and sensitivity computation part in the structural topology optimization problem. The results of the topology optimization for the reduced system show the TLCS provides high accuracy and computation efficiency compared to the full scale system within engineering accuracy.

Study on the Dynamic Analysis Based on the Reduced System (축소모델 기반 구조물의 동적해석 연구)

  • Kim, Hyung-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.439-450
    • /
    • 2008
  • In this study, the reduced system for the dynamic analysis is proposed and the selection criterion of the primary degrees of freedom is presented considering the relation between natural frequency and external loading frequency. A well-constructed reduced system can assure the accurate representation of the dynamic behavior under arbitrary dynamic loads. For selecting the primary degrees of freedom of the reduced system, we employ the robust two-level condensation scheme of which the reliability has been proven through previous study. In the numerical examples, the reliability of the dynamic analysis based on the reduced system is demonstrated through comparing with those of global system.

Wing Optimization based on the Reduced System (축소시스템 기반 비행체 윙 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Kim, Hak-Beom;Cho, Maneg-Hyo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.471-474
    • /
    • 2011
  • 본 연구에서는 신뢰성과 효율성을 보장하는 축소기법을 기반으로 비행체 윙의 최적화 기법을 제안한다. 본 연구에서 사용하는 축소기법은 주자유도 기반으로 시스템을 구축하기 때문에, 구조물의 거동에 대해 지배적인 자유도를 잘 선정하는 것이 매우 중요하다. 잘 구성된 축소시스템은 최적화 과정에서 반드시 필요한 민감도 계산에서도 정확한 결과를 제공한다. 본 연구에서는 주자유도 선정을 위해 기존연구에서 신뢰성이 검증된 2단계 축소방법을 사용하였고, IRS에 의해 최종시스템을 구축하였다. 수치예제에서는 구속조건으로 부과되는 등가응력, 고유치 및 민감도는 모두 축소시스템 기반으로 구해지며, 최종적으로 제안된 기법을 통해 구속조건을 잘 만족하면서 목적함수에 대한 최적 결과를 얻을 수 있음을 보인다.

  • PDF

Sub-Pixel Rendering Algorithm Using Adaptive 2D FIR Filters (적응적 2차원 FIR 필터를 이용한 부화소 렌더링 기법)

  • Nam, Yeon Oh;Choi, Ik Hyun;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, we propose a sub-pixel rendering algorithm using learning-based 2D FIR filters. The proposed algorithm consists of two stages: the learning and synthesis stages. At the learning stage, we produce the low-resolution synthesis information derived from a sufficient number of high/low resolution block pairs, and store the synthesis information into a so-called dictionary. At the synthesis stage, the best candidate block corresponding to each input high-resolution block is found in the dictionary. Next, we can finally obtain the low-resolution image by synthesizing the low-resolution block using the selected 2D FIR filter on a sub-pixel basis. On the other hand, we additionally enhance the sharpness of the output image by using pre-emphasis considering RGB stripe pattern of display. The simulation results show that the proposed algorithm can provide significantly sharper results than conventional down-sampling methods, without blur effects and aliasing.

The Embedded System Realization Based on the IDCT for the Moving Image Down Conversion (동영상 축소전환을 위한 IDCT기반 임베디드 시스템 구현)

  • 김영빈;강희조;윤호군;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.136-139
    • /
    • 2004
  • This thesis is realization of embedded system that of MPEG-2 down conversion using IDCT. A method for down conversion of MPEG compressed video is to perform low-pass filtering and sub-sampling after full decompression. However, this method is need large memory and high computational complexity. Recent research has been focussed on the down conversion in the DCT domain. But DCT method is reduced image qualify. The embedded system is require low complexity, and high speed algorithm. When applied to embedded system that down conversion method, DCT method is played average 29 frame per second, and better 25% than spatial-domain down conversion.

  • PDF

A study on the proper orthogonal decomposition of the structural dynamic system (구조진동시스템의 적합직교분해에 관한 연구)

  • Baek, Sung-Min;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.171-174
    • /
    • 2010
  • 적절한 근사화 과정을 통하여 구축된 축소 시스템은 전체 시스템의 거동을 적은 수의 정보를 통하여 효과적으로 표현할 수 있다. 효과적인 시스템 축소를 위하여 본 연구에서는 주파수 영역 Karhunen-Loeve (Frequency-domain Karhunen-Loeve, FDKL) 기법과 시스템 등가 확장 축소 과정(System equivalent expansion reduction process, SEREP)을 연동한 축소 기법을 제안한다. 적합직교분해(Proper orthogonal decomposition)의 한 방법인 FDKL기법을 통하여 최적모드(Optimal mode)를 구하고 이에 SEREP을 적용하여 자유도 변환 행렬을 구한다. 이때 주자유도 선정은 2단계 축소기법을 적용한다. 최종적으로 제안된 기법은 수치예제를 통하여 검증한다.

  • PDF

Structural System Identification by Iterative IRS (반복적 IRS를 이용한 구조 시스템 식별)

  • Baek, Sung-Min;Kim, Hyun-Gi;Kim, Ki-Ook;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • In the inverse perturbation method, enormous computational resource was required to obtain reliable results, because all unspecified DOFs were considered as unknown variables. Thus, in the present study, a reduced system method is used to condense the unspecified DOFs by using the specified DOFs, and to improve the computational efficiency as well as the solution accuracy. In most of the conventional reduction methods, transformation errors occur in the transformation matrix between the unspecified DOFs and the specified DOFs. Thus it is hard to obtain reliable and accurate solution of inverse perturbation problems by reduction methods due to the error in the transformation matrix. This numerical trouble is resolved in the present study by adopting iterative improved reduced system(IIRS) as well as by updating the transformation matrix at every step. In this reduction method, system accuracy is related to the selection of the primary DOFs and Iteration time. And both are dependent to each other So, the two level condensation method (TLCS) is selected as Selection method of primary DOFs for increasing accuracy and reducing iteration time. Finally, numerical verification results of the present iterative inverse perturbation method (IIPM) are presented.