Study on the Efficient Dynamic System Condensation

동적 해석의 효율적 축소기법에 관한 연구

  • 백승민 (서울대학교 기계항공공학부 대학원) ;
  • 김기욱 (인하대학교 기계공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Published : 2007.06.30

Abstract

Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. In the first step, the selection of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation. In the second step, the primary degrees of freedom are selected by the sequential elimination method from the degrees of freedom connected to the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system (IIRS) to increase accuracy of the higher modes in the intermediate range. Also, it is possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Finally, numerical examples demonstrate the performance of the proposed method.

축소시스템 기법은 전체 구조의 거동을 나타내는 저차 고유모드를 근사화한다. 지난 연구에서 축소 시스템을 구축하기 위한 2단계 축소기법을 제안하였다. 첫 단계에서 리츠벡터를 이용한 각 요소의 레일리 지수를 통해 요소 에너지를 예측 하고 이를 토대로 후보영역을 선정한다. 다음 단계에서 후보영역에 포함된 자유도로 축소된 1단계 축소 시스템에 순차적 소거법을 적용하여 최종적인 주자유도를 선정한다. 이번 연구에서는 2단계 축소 기법에 축소시스템 개선을 위한 반복적 기법을 적용하여 중간영역에서의 고차모드의 정확도를 추가적인 시스템의 확장없이 구하는 방법을 제안한다. 이 방법은 축소시스템에서 고유치와 고유모드의 정확도를 조절하는 것까지도 가능하다. 최종적으로 제안된 기법의 성능을 수치 예제를 통해 검증한다.

Keywords

References

  1. Aminpour, M.A. (1992) Direct Formulation of a Hybrid 4-Node Shell Element with Drilling Degrees of Freedom, International Journal for Numerical Methods in Engineering, 35, pp.997-1013 https://doi.org/10.1002/nme.1620350504
  2. Cho, M., Kim, H.G.(2004) Element-Based Node Selection Method for Reduction of Eigenvalue problem. AIAA Journal, 42(8), pp.1677-1684 https://doi.org/10.2514/1.5407
  3. Friswell, M.I., Garvey, S.D., Penny, J.E.T. (1998) the convergence of the iterated IRS method, Journal of Sound and Vibration, 211(1), pp.123-132 https://doi.org/10.1006/jsvi.1997.1368
  4. Guyan, R.J.(1965) Reduction of stiffness and mass matrices, AIAA Journal, 3(2), pp.380 https://doi.org/10.2514/3.2874
  5. Henshell, R.D., Ong, J.H.(1975) Automatic masters from eigenvalues economization, Journal of Earthquake Equation and Structural Dynamic, 3, pp.375-383
  6. Kim, H., Cho, M.(2006) Improvement of Reduction Method Combined with Sub-domain Scheme in Large scale Problem, International Journal for numerical methods in engineering, 70(2), pp.206-251 https://doi.org/10.1002/nme.1868
  7. Kim, H., Cho, M. (2006) Two-level scheme for selection of primary degrees of freedom and semi-analytic sensitivity based on the reduced system, Computer Methods in Applied Mechanics and Engineering, 195, pp.4244-4268 https://doi.org/10.1016/j.cma.2005.08.004
  8. Kim, K.O., Choi, Y.J.(2000) Energy method for selection of degrees of freedom in condensation, AIAA Journal, 38(7), pp.1253-1259 https://doi.org/10.2514/2.1095
  9. Kim, K.O., Kang, M.K.(2001) Convergence Acceleration of iterative Modal Reduction methods, AIAA Journal, 39(1), pp.134-140 https://doi.org/10.2514/2.1281
  10. O'callahan, J.(1989) A Procedure for an improved reduced system (IRS) model, Proceedings of 7th International Modal Analysis Conference, pp.17-21
  11. Shah, V.N., Raymund, M. (1982) Analytical selection of masters for the reduced eigenvalue problem, International Journal for Numerical Method In Engineering, 18(1), pp.89-98 https://doi.org/10.1002/nme.1620180108
  12. Zhang, D.W., Li, S. (1995) Succession-level approximate reduction (SAR) technique for structural dynamic model. Analysis conference (Nashville, TN), Union college press, Schenectady, NY, pp.435-441