• Title/Summary/Keyword: 1g Shaking table tests

Search Result 77, Processing Time 0.025 seconds

Study on flexible segment efficiency for seismic performance improvement of subsea tunnel (해저터널 내진성능 향상을 위한 Flexible segment 효용성 연구)

  • Jang, Dong-In;Kim, Jong-Ill;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.503-515
    • /
    • 2017
  • Underground structures that have recently become larger are required to be stable not only during normal times but also during earthquakes. Especially, it is very important to maintain the stability of the subsea tunnels during the earthquake. The objective of this paper is to verify the effectiveness of the flexible segment, which is one of the breakthrough facilities to maintain the stability of the subsea tunnel during the earthquake using the shaking table test. Another goal of this paper is to propose the optimum position of the flexible segment through 3D dynamic numerical analysis based on the verified results from shaking table tests. The 1g shaking table test considering the similarity ratio (1:100) to the cross section of the selected artificial subsea tunnel was carried out considering the Geongju and Artificial seismic waves, longitudinal and lateral wave, and with/without flexible segments eight times or more. As a result of the shaking table test, it was confirmed that the flexible segment is effective in improving the seismic performance of the undersea tunnel in all the experimental results. In addition, 3D dynamic numerical analysis was performed to select the optimum position of the flexible segment which is effective for improving seismic performance. As a result, it was confirmed that the seismic acceleration is attenuated when the flexible segment is installed adjacent to the branch section in subsea tunnel.

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

Estimation of the Permeability Variation in Saturated Sand Deposits Subjected to Shaking Load Using 1-g Stinking Table Test (1-g 진동대시험을 이용한 진동하중을 받는 포화된 모래지반의 투수계수 변화 추정)

  • 하익수;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.363-369
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction and to estimate the variation in permeability during shaking load, which should be known for settlement predictions of the ground undergoing liquefaction. In this study, 1-g shaking table tests were carried out for 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured dissipation curve of the excess pore pressure after liquefaction was linearly simulated using the solidification theory, and from the analysis of the slopes of linearly simulated curves, the correlation between dissipation velocity and the gradation characteristics was obtained. By substituting this correlation and the measured settlement to the dissipation velocity equation recommended in solidification theory, the permeability during dissipation was calculated, which was used for estimating the permeability variation during shaking load. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size divided by the coefficient of uniformity. The permeability during dissipation and liquefaction increased by 1.1∼2.8 times and 1.4∼5 times compared to the initial permeability of the original ground, respectively. And the amount of increase became greater as the effective grain size of the test sand increased and the coefficient of uniformity decreased.

Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions (지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구)

  • Na, Seon-Hong;Kim, Seong-Hwan;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Seismic performance of emergency diesel generator for high frequency motions

  • Jeong, Young-Soo;Baek, Eun-Rim;Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1470-1476
    • /
    • 2019
  • The nuclear power plants in South Korea have been designed in accordance with the U.S. Regulatory Guide 1.60 (R.G 1.60) design spectrum of which the peak frequency range is 2-10 Hz. The characteristics of the earthquakes at the Korea nuclear power plant sites were observed to be closer to that of Central and Eastern United States (CEUS) than the R.G 1.60, which is a lower amplification in a low frequency range, and a higher amplification in a high frequency range. The possibility of failure for sensitive power plant components in the high frequency range has been considered and evaluated. In this study, in order to improve the reliability of nuclear plant and administrative control procedures, seismic tests of an emergency diesel generator (EDG) were conducted using a shaking table under both high and low frequency ranges. From the tests, oil/lubricant leaks from the bolt connections, the fuel filter and the fuel inlet were observed. Therefore, the check list of nuclear plant components after an earthquake should include bolt connections of EDG as well as anchor bolts.

Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test (진동대 실험을 이용한 게비온-식생토낭 옹벽 시스템의 동적주동토압 산정)

  • Kim, Da Been;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.15-26
    • /
    • 2019
  • This study was conducted to characterize shearing strength of geotextile bag, connecting materials and gabion. A largescale shaking take tests were conducted to assess kinetic characteristics of gabion-geotextile bag retaining wall. Based on the results of large-scale shaking table test, dynamic characteristics of gabion-geotextile bag retaining wall structure against acceleration, displacement, and earth pressure were also analyzed. The increments of dynamic active earth pressure were determined to be (0.376-0.377)H at 1:0.3 slope and $(0.154-0.44)g_n$ earthquake acceleration, and (0.389-0.393)H at 1:1 slope, suggesting that the increments tend to rise as the slope decreases.

Seismic Response of Stone Column-Improved Soft Clay Deposit by Using 1g Shaking Table (1g 진동대를 이용한 쇄석말뚝으로 개량된 연약점토 지반의 지진 응답 특성)

  • Kim, Jin-Man;Lee, Hyun-Jin;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.61-70
    • /
    • 2010
  • A series of shaking table tests were conducted to estimate the seismic performance of soft ground deposits improved by stone column. The amplification of acceleration, shear strain, and shear wave velocity were evaluated to compare the seismic response of unimproved ground deposits with that of improved ground deposits. From the test results, it was shown that the stone column can prevent large shear deformation in ground deposits. However, it was also found that the acceleration of improved ground deposits may be amplified more than that of unimproved ground deposits when it was subjected to short periodic seismic wave. The results suggest that it is necessary to perform the ground response analysis with model experiments for both unimproved and improved ground deposits to evaluate the effect of stone column on the seismic performance of improved ground deposits.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests (1g 진동대 실험을 이용한 액상화 지반에 근입된 말뚝에 작용하는 동적 토압 분석)

  • Han, Jin-Tae;Choi, Jung-In;Kim, Sung-Hwan;Yoo, Min-Taek;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.87-98
    • /
    • 2011
  • In this study, the magnitude and phase variation of dynamic earth pressure acting on a pile in liquefiable soils were analyzed using a series of 1g shaking table tests. In the case of a pile in dry sand, the value of the dynamic earth pressure was the highest near the surface due to the inertia force of the upper load on the pile and it decreased as the depth of the pile got lower. On the other hand, for a pile in liquefiable sand, the magnitude and shape of the dynamic earth pressure were similar to those of the excess pore pressure and was largely affected by the deformation of soils. Furthermore, the inertia force of the upper load and the dynamic earth pressure acted in opposite directions in cases of dry sand and saturated sand where low excess pore pressure had developed. However, after liquefaction, those force components near surface acted unfavorably in the same direction. Finally, the Westergaard’s solution was modified and proposed as a method to evaluate the magnitude of dynamic earth pressure acting on a pile during liquefaction.