Alzheimer's disease (AD) is highly prevalent in dementia, with no specifically effective treatment having yet been discovered. Amyloid plaques are one of the key hallmarks of AD. Transgenic mouse models exhibiting Alzheimer's disease-like pathology have been widely used to study the pathophysiology of Alzheimer's disease. In this study, we showed an age-dependent correlation between cognitive function, pathological findings, and [F-18] Florbetaben (FBB) PET images. Nineteen transgenic mice (12 with AD, 7 with controls) were used for this study. We observed an increase in ${\beta}$-Amyloid deposition ($A{\beta}$) in brain tissue and [F-18] FBB amyloid PET imaging in the AD group. The [F-18] FBB data showed a mildly negative trend with cognitive function. Pathological findings were negatively correlated with cognitive functions. These finding suggests that amyloid beta deposition can be well-monitored with [F-18] FBB PET and a decline in cognitive function is related to the increase in amyloid plaque burden.
Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish ${\beta}$-Amyloid ($A{\beta}$) positive from $A{\beta}$ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). $^{18}F$-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for $A{\beta}$ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for $A{\beta}$ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify $^{18}F$-Florbetaben amyloid brain PET image for $A{\beta}$ positivity using PCA-SVM model, with no additional effects on GMM.
Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the ${\beta}$-Amyloid ($A{\beta}$) deposition. We designed a convolutional neural network (CNN) model that predicts the $A{\beta}$-positive and $A{\beta}$-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the $A{\beta}$-positive and $A{\beta}$-negative status.
18F-FBB 판독은 회백질과 백질의 신호강도를 육안으로 비교하여 이루어진다. 정량화된 영상분석을 판독과 비교하여 영상분석의 유용성을 평가하고자 한다. 환자는 판독결과를 기준으로 음성과 양성을 100명씩 나누었고 FBB 300 MBq 주입하고 90분 뒤 20분간 촬영했다. 장비는 Discovery 600 (GE Healthcare, MI, USA)을 사용하였다. 제조사에서 제공하는 아밀로이드 판독 기준을 근거하여 4개의 관심영역을 설정하였다. 영상분석은 각 SUVmean을 소뇌로 나누어 SUVr를 산출하고 전체 영역에서의 평균 SUVr로 진행하였다. 통계분석은 ROC Curve를 통한 Cutoff 도출과 독립표본 t-test의 그룹간 차이, 그리고 Kappa test를 통한 판독결과와 일치도를 분석하였다. 전체 영역에서의 평균 SUVr의 Cutoff는 1.23으로 나왔다. Cutoff를 사용한 판독결과와 일치도는 음성에서 95/100 (95 %), 양성에서 92/100 (92 %)로 나왔다. t-test 결과 그룹 간에 통계적으로 유의한 차이가 있었고(P < 0.05) Kappa 통계 결과 0.867로 높은 일치도를 나타냈다(P < 0.05). 영상분석의 결과가 통계적으로 유의하며 판독결과에도 높은 일치도를 보여 주었다. 추가적으로 FBB 영상분석은 아밀로이드가 축적된 부위를 3D 매핑하여 볼 수 있고 위치추정이 가능하며 정량분석 결과를 세분화하여 볼 수 있다. 정량화된 FBB 영상분석을 보조지표로 활용한다면 판독에 도움이 될 것으로 사료된다.
Chanda Simfukwe;Reeree Lee;Young Chul Youn;Alzheimer’s Disease and Related Dementias in Zambia (ADDIZ) Group
대한치매학회지
/
제22권2호
/
pp.61-68
/
2023
Background and Purpose: Analyzing brain amyloid positron emission tomography (PET) images to access the occurrence of β-amyloid (Aβ) deposition in Alzheimer's patients requires much time and effort from physicians, while the variation of each interpreter may differ. For these reasons, a machine learning model was developed using a convolutional neural network (CNN) as an objective decision to classify the Aβ positive and Aβ negative status from brain amyloid PET images. Methods: A total of 7,344 PET images of 144 subjects were used in this study. The 18F-florbetaben PET was administered to all participants, and the criteria for differentiating Aβ positive and Aβ negative state was based on brain amyloid plaque load score (BAPL) that depended on the visual assessment of PET images by the physicians. We applied the CNN algorithm trained in batches of 51 PET images per subject directory from 2 classes: Aβ positive and Aβ negative states, based on the BAPL scores. Results: The binary classification of the model average performance matrices was evaluated after 40 epochs of three trials based on test datasets. The model accuracy for classifying Aβ positivity and Aβ negativity was (95.00±0.02) in the test dataset. The sensitivity and specificity were (96.00±0.02) and (94.00±0.02), respectively, with an area under the curve of (87.00±0.03). Conclusions: Based on this study, the designed CNN model has the potential to be used clinically to screen amyloid PET images.
YongSoo Shim;Dong Won Yang;SeongHee Ho;Yun Jeong Hong;Jee Hyang Jeong;Kee Hyung Park;SangYun Kim;Min Jeong Wang;Seong Hye Choi;Seung Wan Kang
대한치매학회지
/
제21권4호
/
pp.126-137
/
2022
Background and Purpose: Early detection of subjective cognitive decline (SCD) due to Alzheimer's disease (AD) is important for clinical research and effective prevention and management. This study examined if quantitative electroencephalography (qEEG) could be used for early detection of AD in SCD. Methods: Participants with SCD from 6 dementia clinics in Korea were enrolled. 18F-florbetaben brain amyloid positron emission tomography (PET) was conducted for all the participants. qEEG was performed to measure power spectrum and source cortical activity. Results: The present study included 95 participants aged over 65 years, including 26 amyloid PET (+) and 69 amyloid PET (-). In participants with amyloid PET (+), relative power at delta band was higher in frontal (p=0.025), parietal (p=0.005), and occipital (p=0.022) areas even after adjusting for age, sex, and education. Source activities of alpha 1 band were significantly decreased in the bilateral fusiform and inferior temporal areas, whereas those of delta band were increased in the bilateral cuneus, pericalcarine, lingual, lateral occipital, precuneus, posterior cingulate, and isthmus areas. There were increased connections between bilateral precuneus areas but decreased connections between left rostral middle frontal area and bilateral frontal poles at delta band in participants with amyloid PET (+) showed. At alpha 1 band, there were decreased connections between bilateral entorhinal areas after adjusting for covariates. Conclusions: SCD participants with amyloid PET (+) showed increased delta and decreased alpha 1 activity. qEEG is a potential means for predicting amyloid pathology in SCD. Further longitudinal studies are needed to confirm these findings.
목 적 : 노년기 우울증 환자에서 우울증상이 알츠하이머병의 전구 증상으로 나타났는지를 감별하는 것은 중요한 임상적 과제이다. 본 연구에서는 정량화 뇌파(quantitative EEG) 지표가 노년기 우울증 환자의 알츠하이머병 병리를 예측할 수 있는 바이오마커로 기능할 수 있는지 확인하고자 하였다. 방 법 : 치매로 진단 받지 않은 55세 이상의 우울증 환자 63명이 본 연구에 포함되었다(여성 76.2%; 평균 연령 ± 표준편차 73.7 ± 6.87세). 연구 대상자들은 [18F] florbetabenPET 결과에 따라 아밀로이드 양성(Aβ+, n = 32)과 음성으로(Aβ-, n = 31) 분류하였다. 뇌파는 7분 간의 눈을 감은 상태(eye-closed, EC)와 3분 간의 눈을 뜬 상태(eye-open, EO)로 촬영하였으며, 푸리에 변환(Fourier transform)을 이용하여 스펙트럼 분석을 시행하였다. 선행연구 결과에 따라 안구 개폐 알파파 반응성 지표(EC-to-EO alpha reactivity index)가 노년기 우울증 환자의 아밀로이드 침착을 예측할 수 있는 신경생리학적 마커가 될 수 있는지 검증하였다. 알파 밴드 파워에서 아밀로이드 침착 여부(Aβ+ vs. Aβ-), 안구 개폐 조건(EC vs. EO), 지형학적 요인(laterality, polarity) 간의 상호작용을 확인하고 사후 분석을 시행하였다. 결 과 : Aβ+군과 Aβ-군에서 각 주파수 밴드의 평균 파워 스펙트럼 밀도 중 EO phase의 알파 밴드 파워에서만 유의미한 차이가 관찰되었다(F = 6.258, p = 0.015). 알파 밴드에서의 Group (Aβ+ vs. Aβ-) × Condition (EC vs. EO) × Laterality (Left, midline, or right) 3-way interaction이 연령, 성별, 교육 연수, 전반적 인지 기능, 약물 사용, MRI상 백질 고신호강도를 보정한 뒤에도 유의하였다(F = 3.720, p = 0.030). 하지만 대뇌 관심영역 별로 아밀로이드 침착에 따른 알파파 반응성을 비교한 사후 분석에서는 유의한 수준의 차이가 관찰되지 않았다. 결 론 : 노년기 우울증 환자에서 EO phase의 알파 밴드 파워 증가가 대뇌 아밀로이드 침착과 관련이 있었다. 하지만 본 연구에서 검증하고자 했던 안구개폐 알파파 반응성 지표는 알츠하이머병 병리를 예측하지는 못했다. 보다 많은 대상자를 포함한 추후 연구로 해당 결과를 재검증할 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.