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Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician 
with a lot of time and effort to determine the β-Amyloid (Aβ) deposition. We designed a convolutional neural network 
(CNN) model that predicts the Aβ-positive and Aβ-negative status. We performed 18F-florbetaben (FBB) brain PET on 
controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET 
images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model 
for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter 
masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM 
than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-
based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 
99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray 
matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based 
decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the 
Aβ-positive and Aβ-negative status. 
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INTRODUCTION 
 

β-Amyloid (Aβ) is considered an important hallmark re- 

quired to understand Alzheimer's disease (AD) and predict 

disease prognosis (Hardy et al., 1991; Gunasekaran et al., 

2015). 18F-florbetaben (FBB) is a type of Aβ-targeting radio- 

pharmaceutical tracer. 18F-FBB amyloid positron emission 

tomography (PET) provides accurate and early diagnosis 

with high sensitivity and specificity (Barthel et al., 2011). 
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Brain amyloid plaque load (BAPL) score a is pre-defined 

three-grade scoring system wherein measurements are made 

by the physician according to the visual assessment of the 

subject's amyloid deposition in the brain using 18F-FBB. 

BAPL scores of 1 (BAPL 1), 2 (BAPL 2), and 3 (BAPL 3) 

indicate no Aβ load, minor Aβ load, and significant Aβ load, 

respectively. Therefore, BAPL 1 is considered to indicate Aβ- 

negative status, whereas BAPL 2 and BAPL 3 indicate Aβ- 

positive status (Barthel et al., 2011). 

The visual evaluation of the image by the clinician is the 

most reliable way of image evaluation; however, it involves 

the disadvantage of being time-consuming and labor-intensive. 

Moreover, a numerical comparison is impossible, resulting 

in inter-observer problems (Gulshan et al., 2016). In conven- 

tional amyloid PET image analysis, comparison and staging 

through pre-defined cutoffs using metrics, such as standard 

uptake value ratio, and statistical analysis techniques using 

statistical parametric mapping (SPM) were treated as quanti- 

tative methods to resolve these issues (Lopresti et al., 2005). 

Recently, new image analysis technologies that use deep 

learning have been applied to the field of medicine in medical 

imaging, and remarkable achievements have been reported 

(Gulshan et al., 2016; Lakhani et al., 2017). 

In the present study, we compared the classification per- 

formance of the slice-based posterior probabilities of Aβ-

positive status, calculated using the pre-trained VGG16 model 

as per gray matter masking obtained with only functional 

PET and the estimated subject-based posterior probabilities 

using rule-based approach to mimic the clinical setting. 

 

MATERIALS AND METHODS 

Subjects 

All the data used in this study were retrospectively sampled 

at the Department of Nuclear Medicine, Dong-A university 

hospital (DANM), from November 2015 to May 2018. The 

study population involved totally 173 subjects; 60 subjects 

had a BAPL score of 1, 53 had a score of 2, and 60 had a 

score of 3. Detailed information of the study population is 

presented in Table 1. 

Amyloid PET dataset 

Image labeling and sampling: Clinical information, in- 

cluding the qualitative analysis of 18F-FBB PET and BAPL 

scores of the DANM dataset, was arranged in cooperation 

with Department of Neurology, Dong-A university hospital. 

According to the current diagnostic criteria for 18F-FBB 

PET, BAPL 1 is considered a state of Aβ-negative, whereas 

BAPL 2 and BAPL 3 are considered to indicate Aβ-positive 

status. Such a decision depends on the visual assessment by 

the clinician in the trans-axial plane. Therefore, we indexed 

the slices in the trans-axial plane for each patient data; there- 

fore, we performed a visual assessment after sampling the 

pre-determined slices (total 36 slices from 15th to 50th slices 

from 68 slices per a person). Fig. 1 shows an indexed ana- 

tomical slice of randomly sampled patient data. 

In this study, we considered BAPL 2 and BAPL 3 as 

constituting one class according to the definition of BAPL 

consensus to implement the convolutional neural network 

(CNN) model for discriminating the Aβ-positive and Aβ-

Table 1. Demographic details of the patients used to train/validate the selected model 

 Characteristics BAPL*1 BAPL 2 BAPL 3 Total 

Patients (n*) 60 53 60 173 

Mean of age 67.55 73.02 69.08 69.76 

SD* of Age 9.01 5.64 8.83 8.33 

Female (F/Total) 38 (0.63) 32 (0.60) 27 (0.45) 97 (0. 56) 

No. slice of BAPL 1 2160 931 0 3,091 

No. slice of BAPL 2 0 977 0 977 

No. slice of BAPL 3 0 0 2,160 2,160 

*BAPL: brain amyloid plaque load; n: number; SD: standard deviation 
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negative status; therefore, the final problem is defined as a 

binary classification. 

 

Data Pre-processing: The voxel size of raw PET images 

after acquisition from the scanner was 400 × 400 × 110 

(height × width × depth). The raw PET images were 

spatially normalized using the normalization module from 

SPM8. The whole sample dataset was non-linearly registered 

to the PET template; that was created using 21 NC and 9 AD 

subjects who imaged 18F-FBB Amyloid PET. The resulting 

images obtained from SPM8 have a 3-dimensional voxels 

image size of 95 × 79 × 68. 

We performed an experiment that only considers the re- 

gional information on gray matter as much as possible by 

masking each sample using the gray matter masking (GMM) 

obtained from the PET template used to register the entire 

data and the volume of the whole brain. Fig. 3 shows the state 

and difference in the images observed in this experimental 

procedure. 

Following this, all the data were normalized such that the 

mean was 0 and the standard deviation was 1 prior to entering 

a selected model. All the above procedures were performed 

outside the outer and inner loop of the nested cross validation 

(NCV). In the NCV, the inner loop operates a wrapper algo- 

rithm that searches for hyper-parameters by performing hold- 

out again on the subset from the entire dataset for hyper-

parameter validation, such as grid search or random search 

algorithm (Pedregosa et al., 2011; Bergstra et al., 2012; 

Taylor et al., 2017). In the present study, we used Bayesian 

optimization (Snoek et al., 2012) as the wrapper algorithm. In 

each outer loop, the hyper-parameter ultimately determined 

from each inner loop is used to select the best model for 

estimating the generalization performance in the outer loop 

(Varma et al., 2006). 

In order to select the appropriate deep learning model and 

test it with the above data set, we conducted 4-fold NCV 

and performed stratified sampling to generate each fold. We 

determined the number of folds as observable performance 

variables while maintaining appropriate variance in the limi- 

ted data set. 

Finally, data augmentation was performed on each BAPL 

group up to 3000 slices for each number of data on each 

group to become equal by flipping and rotation method to 

make a selected model learn a positional invariance and give 

BAPL 2 group, which was relatively considered as a small 

data set, more opportunities to be sampled as a batch sample 

to be used in the optimization of the model parameters by 

increasing the number of data belonging to BAPL 2 group. 

Furthermore, data augmentation is a process of learning more 

about robust features in the model by learning about the 

positional invariance of the object in the sample. Therefore, 

all the augmentation processes used in our experiments were 

performed on each loop of NCV. All the data pre-processing 

after spatial normalization is written using packages imple- 

mented using the Python source code. (Python 3.5.2, imgaug 

0.2.6) 

Convolutional neural network 

The VGG16 (visual geometry group) model demonstrated 

the effect of the deep network structure created using the 3 

Fig. 1. The 36 images sampled using 18F-FBB amyloid PET on
the trans-axial plane used to train the VGG16 model. (A) shows
36 slices sampled from the 15th to 50th slices from 68 slices on the 
trans-axial plane. Each slice was indexed in the dorsal direction from
the bottom to the top in a brain and arranged on 6 × 6. (B) shows
the level of the brain placed in each row of the (A). 

A B 



- 421 - 

× 3 size of filters in ImageNet competition (Simonyan et 

al., 2014) and is also adopted as a baseline in experimental 

comparison with many modified models (Long et al., 2015; 

He et al., 2016). In order to classify the pre-processed amy- 

loid PET voxel data, we selected the VGG16 model as a 

fixed classifier for our experiment and attempted to estimate 

the posterior probability for the defined binary label. Here 

the parameter of the VGG16 model was used to derive better 

generalization performances via transfer learning by refer- 

ring to the model parameters learned in the data set of the 

ImageNet competition from the Keras library (Keras 2.2.2 

version). The hyper-parameters were searched through a 

Bayesian optimization and validation was performed in the 

inner loop of the NCV. In the outer loop of the NCV, the 

generalization performance for the model wherein the hyper-

parameter was determined in the inner loop was estimated. 

The parameter space searched with Bayesian optimization 

was the learning rate from 1e-7 to 1e-2, the number of epochs 

from 5 to 100, the number of hidden nodes on a dense layer 

from 5 to 512 and the number of depths for hidden layers 

of fully connected layer from 0 to 3. Prior to the statistical 

estimation via Bayesian optimization, the initial candidate 

was 1e-5 (learning rate), 5 (No. epoch), 1 (No. hidden node), 

and 128 (No. hidden node) and arbitrarily determined by 

the practitioner. Specific details were given in Table 2. The 

model parameters of the VGG16 model determined in each 

NCV loop were converged through the Adam optimizer and 

back propagation algorithm implemented in the Keras library 

and their default values. 

In the present study, we ultimately estimated the output 

as a posterior probability for a sample to be Aβ-positive from 

the slice-based standard to the patient-based standard using 

our selected VGG model. The slice-based Aβ estimation was 

calculated using the VGG16 model and the patient-based 

estimation was determined to be positive for at least one 

positive output from a slice-based decision on the probability 

obtained through the VGG16 model by mimicking the situ- 

ation in actual clinical practice. 

 

RESULTS 
 

Table 3 shows the average and standard deviation values 

of each performance estimated from the outer loop of 4-fold 

NCV as per the observed brain region and evaluation stan- 

dards. In order to compare the performance as per GMM at 

a slice-based standard, the performance of the model that 

only observed the gray matter region was higher on all the 

performance metrics as compared to that of the model ob- 

Table 2. Comparison of the classification performance according to pre-process (%) (SD) 

  Accuracy Aβ-negative recall Aβ-positive recall 

Slice based classification without GMM* 89.60 (1.77) 95.32 (2.75) 85.76 (3.29) 

Slice based classification with GMM 92.39 (2.51) 98.94 (0.95) 87.93 (4.36) 

Subject based classification without GMM 89.21 (1.14) 70.00 (3.85) 99.14 (1.72) 

Subject based classification with GMM 89.78 (6.01)  81.67 (17.53) 93.97 (5.89) 

*GMM: gray matter masking 

Table 3. Hyper-parameter space searched using Bayesian optimization used in all the inner loops 

 Type without GMM* with GMM Total 

Learning rate 0.0007 (0.0017) 0.0013 (0.0026) 0.0011 (0.0023) 

No. epoch 15.25 (25.91) 23.25 (27.51) 20.58 (26.69) 

No. hidden nodes 1 (0.93) 1 (0.52) 1 (0.66) 

No. hidden layers 158 (117.41) 185.38 (149.51) 176.25 (127.65) 

Accuracy (%) (SD) 99.69 (0.88) 97.50 (6.58) 98.2 (5.44) 

GMM: gray matter masking 



- 422 - 

serving the whole brain region (accuracy 92.39 vs. 89.60, 

sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). 

In contrast, the performances as per masking at a patient-

based standard were almost similar (89.78 vs. 89.21), espe- 

cially in terms of the accuracy; however, the sensitivity when 

the GM region was included was lower compared to when 

the white matter region was included (93.97 vs. 99.14). Fur- 

ther, the specificity on inclusion of the GM region was higher 

than that when the white matter region was included (81.67 

vs. 70.00). 

In order to evaluate the discrimination power of the selec- 

ted model that estimates the slice-level posterior probability 

and the rule-based estimation approach, the area under curve 

(AUC) was calculated using receiver operating characteristic 

(ROC) analysis for each experiment. The AUC when the 

VGG16 model observed only the gray matter region was 

slightly higher as compared to when the whole brain was 

observed for both the slice-based and patient-based decision 

Fig. 2. Receiver operating characteristic (ROC) analysis for the classification on several experiments slice-based/patient-based and 
with/without gray matter masking. The dotted line on the figure shows 95% confidence interval of the ROC curves. A and B show the 
results of the classification performance that the selected model estimates in a slice-based standard according to the masking gray matter. C
and D show the ROC curve of the rule-based classification that mimics the condition in actual clinical practice using slice-based estimation
from the A and B processes. Values for the area under the curve for A, B, C, and D were 0.972, 0.976, 0.973, and 0.983, respectively. 
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process (Fig. 2). A and B show the results of the classification 

performance that the selected model estimated in the slice-

based standard according to masking gray matter. C and D 

show the ROC of the rule-based classification, mimicking 

the situation in an actual clinical setting using slice-based 

estimations from A and B processes. AUC for A, B, C, and 

D were 0.972, 0.976, 0.973, and 0.983, respectively. 

Hyper-parameters determined from an inner loop of the 

NCV and used for the estimation of slice-based classification 

performance are summarized in Table 3. In the search can- 

didates of the Bayesian optimizer, hyper-parameter values 

were higher than those while considering the whole brain, 

except the hidden nodes. Moreover, comparing the perfor- 

mance estimation in each inner loop in the NCV applied to 

the experiment, the variance of the estimated performance 

is less than the variance of the hyper-parameters. 

 

DISCUSSION 
 

In the conventional quantitative analysis of amyloid PET 

as per the pathological deposition patterns of amyloid plaque, 

studies have considered a region of gray matter as the region 

of interest (Choi et al., 2016). However, the deep learning 

approach is a process of learning a mathematical function 

with millions of parameters in a data set and finding a mean- 

ingful feature from the input data. This approach has been 

applied for various purposes in the field of medicine with 

remarkable achievements (Gulshan et al., 2016). Our experi- 

mental results show that both, the sensitivity and specificity 

are improved when a pre-trained VGG16 model is learned 

by inputting the data of the gray matter separately from that 

of the whole brain in the slice-based classification. This may 

indicate that the features obtained by observing only the gray 

matter involve more distant and discriminating features be- 

tween the Aβ-positive and Aβ-negative groups than those 

obtained by observing the whole brain. 

In addition, in our results, the pre-trained VGG16 showed 

about 90% accuracy, suggesting that the method of gene- 

rating amyloid PET template for brain spatial normalization 

and mask for gray matter using only the functional image 

may be enough for performing quantitative analysis. This 

suggests that it can be applicable as a quantitative method 

in cases where the anatomical image is not available. More- 

over, even though the count normalization for each lobe of 

the reference region, such as cerebellar gray matter, was not 

applied in our data set, the pre-trained VGG16 model showed 

a discriminating performance, including visual evaluation 

of a human clinician using the contrast of activity rather than 

the count of activity. 

The rule of subject-based determinations from the slice-

based output of the pre-trained VGG16 model was con- 

sidering the highest posterior probability from a list of 36 

slice-based posterior probabilities for each subject to be Aβ-

positive as an ultimate posterior probability for a subject. 

Therefore, the false-positive rate for each slice exerts a con- 

siderable effect on the false-positive rate of the subject-based 

Fig. 3. Amyloid PET images used in this study. Fig. 3-A shows the raw PET slice after acquisition. Fig. 3-B is the cropped image and 
registered into Fig. 3-C space of the 18F FBB PET template. And Fig. 3-D is mask of gray matter obtained from Fig. 3-C (threshold = 0.5). 

A B C D 
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decision. Although the sensitivity of the subject-based deci- 

sion without GMM was higher than that of the subject-based 

decision with GMM, the specificity was lower. In the entire 

outer loop of the NCV, 18 out of 19 cases were incorrectly 

identified with BAPL 1, and 1 case was incorrectly identified 

with BAPL 2 for the subject-based experiment without gray 

matter; 11 out of the 18 cases were incorrect BAPL 1, and 

7 other cases were identified with BAPL 2 for the subject-

based experiment with gray matter. Therefore, further research 

is required in a follow-up study on how to distinguish be- 

tween BAPL 1 and BAPL 2 rather than BAPL 3. 

We trained the pre-trained VGG16 model to estimate the 

posterior probabilities of Aβ-positive for each slice of a sub- 

ject. Moreover, the posterior probabilities for each subject 

were estimated using the calculated posterior probabilities, 

and we evaluated the performance as a predictive model. In 

particular, we performed pre-processing, including spatial 

normalization and acquisition of GMM using only functional 

images. Finally, we compared the performance of the clas- 

sifiers considering only the gray matter or the whole brain. 

The data set used in the experiment was that of 173 subjects 

imaged using 18F-FBB PET. We found that the slice-based 

classification with GMM showed better performance for dis- 

tinguishing between the Aβ-positive and Aβ-negative groups. 
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