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Amyloid brain positron emission tomography (PETga@as are visually and subjectively analyzed bypthysician
with a lot of time and effort to determine he\myloid (AB) deposition. We designed a convolutional neuralork
(CNN) model that predicts theApositive and B-negative status. We performed 18F-florbetaben {HB&n PET on
controls and patients (n=176) with mild cognitimgpairment and Alzheimer's Disease (AD). We classifirain PET
images visually as per the on the brain amyloidu@doad score. We designed the visual geometopdkdGG16) model
for the visual assessment of slice-based samplesvdluate only the gray matter and not the whia#ten gray matter
masking (GMM) was applied to the slice-based stahdamples. All the performance metrics were highitr GMM
than without GMM (accuracy 92.39 vs. 89.60, seritsitB7.93 vs. 85.76, and specificity 98.94 vs32%. For the patient-
based standard, all the performance metrics weraesalthe same (accuracy 89.78 vs. 89.21), lowasifsgty 93.97 vs.
99.14), and higher (specificity 81.67 vs. 70.00)e Brea under curve with the VGG16 model that obdethe gray
matter region only was slightly higher than the eidhlat observed the whole brain for both slicestand patient-based
decision processes. Amyloid brain PET images caspbeopriately analyzed using the CNN model fodjateng the
AB-positive and A-negative status.
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disease prognosis (Hardy et al., 1991; Gunasekarah,
INTRODUCTION 2015). 18F-florbetaben (FBB) is a type df-fargeting radio-
pharmaceutical tracer. 18F-FBB amyloid positronssion
B-Amyloid (AB) is considered an important hallmark re- tomography (PET) provides accurate and early disigno
quired to understand Alzheimer's disease (AD) andigt  with high sensitivity and specificity (Barthel dt, £2011).
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Table 1.Demographic details of the patients used to tralidiate the selected model

Characteristics BAPL*1 BAPL 2 BAPL 3 Total
Patients (n*) 60 53 60 173
Mean of age 67.55 73.02 69.08 69.76
SD* of Age 9.01 5.64 8.83 8.33
Female (F/Total) 38 (0.63) 32 (0.60) 27 (0.45) @756)
No. slice of BAPL 1 2160 931 0 3,091
No. slice of BAPL 2 0 977 0 977
No. slice of BAPL 3 0 0 2,160 2,160

*BAPL: brain amyloid plaque load; n: number; SDrstard deviation

Brain amyloid plaque load (BAPL) score a is preiuaf
three-grade scoring system wherein measurementsaaie
by the physician according to the visual assessofetite
subject's amyloid deposition in the brain using -E8B.

BAPL scores of 1 (BAPL 1), 2 (BAPL 2), and 3 (BABL
indicate no A load, minor 48 load, and significant fload,

respectively. Therefore, BAPL 1 is considered tliciate A3-

negative status, whereas BAPL 2 and BAPL 3 indiégite
positive status (Barthel et al., 2011).

The visual evaluation of the image by the clinidgathe
most reliable way of image evaluation; howevenviblves
the disadvantage of being time-consuming and lakenmsive.
Moreover, a numerical comparison is impossibla,ities)
in inter-observer problems (Gulshan et al., 20b63onven-
tional amyloid PET image analysis, comparison aagirsy
through pre-defined cutoffs using metrics, sucktasdard
uptake value ratio, and statistical analysis teqphes using
statistical parametric mapping (SPM) were treaseguanti-
tative methods to resolve these issues (Lopresti, &005).
Recently, new image analysis technologies thatdesp
learning have been applied to the field of medirinaedical
imaging, and remarkable achievements have beerntedpo
(Gulshan et al., 2016; Lakhani et al., 2017).

In the present study, we compared the classificatée-
formance of the slice-based posterior probabilbie#\p-
positive status, calculated using the pre-traine&¥6 model
as per gray matter masking obtained with only fonet
PET and the estimated subject-based posterior lptitiea
using rule-based approach to mimic the clinicalrsgpt

MATERIALS AND METHODS
Subjects

All the data used in this study were retrospegtisampled
at the Department of Nuclear Medicine, Dong-A ursitg
hospital (DANM), from November 2015 to May 2018€Th
study population involved totally 173 subjects;sbdjects
had a BAPL score of 1, 53 had a score of 2, anda6a
score of 3. Detailed information of the study patioh is
presented in Table 1.

Amyloid PET dataset

Image labeling and sampling:Clinical information, in-
cluding the qualitative analysis of 18F-FBB PET &AdPL
scores of the DANM dataset, was arranged in cotipera
with Department of Neurology, Dong-A university hial.

According to the current diagnostic criteria foF1i8BB
PET, BAPL 1 is considered a state gi-Aegative, whereas
BAPL 2 and BAPL 3 are considered to indicafepbsitive
status. Such a decision depends on the visuakassaisby
the clinician in the trans-axial plane. Therefeve,indexed
the slices in the trans-axial plane for each patiata; there-
fore, we performed a visual assessment after sagnitie
pre-determined slices (total 36 slices frorff 1650" slices
from 68 slices per a person). Fig. 1 shows an ediena-
tomical slice of randomly sampled patient data.

In this study, we considered BAPL 2 and BAPL 3 as
constituting one class according to the definitérBAPL
consensus to implement the convolutional neurabanit
(CNN) model for discriminating the fApositive and -
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Fig. 1. The 36 images sampled using 1&BB amyloid PET or
the trans-axial plane used to train the VGG16 mode(A) show:
36 slices sampled from the™® 50" slices from 68 slices on 1
trans-axial plane. Eaddtice was indexed in the dorsal direction 1
the bottom to the top in a brain and arranged of 6. (B) show
the level of the brain placed in each row of thg (A

negative status; therefore, the final problem findd as a
binary classification.

Data Pre-processing:The voxel size of raw PET images
after acquisition from the scanner was 400400 X< 110

(height X width X depth). The raw PET images were

spatially normalized using the normalization moduten
SPMB8. The whole sample dataset was non-linearisteegd
to the PET template; that was created using 21md®aAD
subjects who imaged 18F-FBB Amyloid PET. The rawlt

procedure.

Following this, all the data were normalized sueit the
mean was 0 and the standard deviation was 1 pramtéring
a selected model. All the above procedures weferpezd
outside the outer and inner loop of the nested sraiglation
(NCV). In the NCV, the inner loop operates a wragigo-
rithm that searches for hyper-parameters by peirfigrivold-
out again on the subset from the entire datasetyfper-
parameter validation, such as grid search or rargkarch
algorithm (Pedregosa et al., 2011; Bergstra et2all2;
Taylor et al., 2017). In the present study, we [Bs¢ksian
optimization (Snoek et al., 2012) as the wrapmggraghm. In
each outer loop, the hyper-parameter ultimatelgrd@hed
from each inner loop is used to select the besteiiod
estimating the generalization performance in therdaop
(Varma et al., 2006).

In order to select the appropriate deep learningefrend
test it with the above data set, we conducted dHRCV
and performed stratified sampling to generate &idhWe
determined the number of folds as observable padgoce
variables while maintaining appropriate variancthalimi-
ted data set.

Finally, data augmentation was performed on eachIBA
group up to 3000 slices for each number of dataamh
group to become equal by flipping and rotation roétto
make a selected model learn a positional invariandegive
BAPL 2 group, which was relatively considered asrall
data set, more opportunities to be sampled ash sainple
to be used in the optimization of the model paransdby
increasing the number of data belonging to BAPkap.
Furthermore, data augmentation is a process afigamore
about robust features in the model by learning tibwe
positional invariance of the object in the sampleerefore,
all the augmentation processes used in our expesmere

images obtained from SPM8 have a 3-dimensionallsoxe performed on each loop of NCV. All the data prespssing

image size of 95< 79 X 68.

We performed an experiment that only considersehe
gional information on gray matter as much as ptesilp
masking each sample using the gray matter mag&ikti)
obtained from the PET template used to registeetiiee
data and the volume of the whole brain. Fig. 3 shitw state
and difference in the images observed in this éxyeertal

after spatial normalization is written using pa@sgnple-
mented using the Python source code. (Python 81gaug
0.2.6)

Convolutional neural network

The VGG16 (visual geometry group) model demonsirate
the effect of the deep network structure createétjjubke 3
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Table 2. Comparison of the classification performance atingrto pre-process (%) (SD)

Accuracy A-negative recall B-positive recall
Slice based classification without GMM 89.60 (1.77) 95.32 (2.75) 85.76 (3.29)
Slice based classification with GMM 92.39 (2.51) .938(0.95) 87.93 (4.36)
Subject based classification without GMM 89.214).1 70.00 (3.85) 99.14 (1.72)
Subject based classification with GMM 89.78 (6.01) 81.67 (17.53) 93.97 (5.89)

*GMM: gray matter masking

Table 3.Hyper-parameter space searched using Bayesianizgiton used in all the inner loops

Type without GMM with GMM Total
Learning rate 0.0007 (0.0017) 0.0013 (0.0026) A.@0D023)
No. epoch 15.25 (25.91) 23.25 (27.51) 20.58 (26.69)
No. hidden nodes 1(0.93) 1(0.52) 1 (0.66)
No. hidden layers 158 (117.41) 185.38 (149.51) 25/6127.65)
Accuracy (%) (SD) 99.69 (0.88) 97.50 (6.58) 98.245

GMM: gray matter masking

X 3 size of filters in ImageNet competition (Simomyet
al., 2014) and is also adopted as a baseline ieriexpntal
comparison with many modified models (Long et2015;
He et al., 2016). In order to classify the pre-pesed amy-
loid PET voxel data, we selected the VGG16 modet as
fixed classifier for our experiment and attempteddtimate
the posterior probability for the defined binarppda Here
the parameter of the VGG16 model was used to deetter
generalization performances via transfer learningetfer-
ring to the model parameters learned in the datafstae
ImageNet competition from the Keras library (Kefa®.2
version). The hyper-parameters were searched thraug
Bayesian optimization and validation was perfornmeithe
inner loop of the NCV. In the outer loop of the NGke
generalization performance for the model whererhtyper-
parameter was determined in the inner loop wamatd.
The parameter space searched with Bayesian optiiniza
was the learning rate from le-7 to 1e-2, the numibepochs
from 5 to 100, the number of hidden nodes on agdieyysr
from 5 to 512 and the number of depths for hiddgers
of fully connected layer from 0 to 3. Prior to thtatistical
estimation via Bayesian optimization, the initiahdidate
was le-5 (learning rate), 5 (No. epoch), 1 (Nadéridnode),
and 128 (No. hidden node) and arbitrarily deterchibg

the practitioner. Specific details were given ibl€2. The
model parameters of the VGG16 model determineddh e
NCV loop were converged through the Adam optimizet
back propagation algorithm implemented in the Kidoaary
and their default values.

In the present study, we ultimately estimated tiput
as a posterior probability for a sample to Ifepasitive from
the slice-based standard to the patient-basedasthnging
our selected VGG model. The slice-bas@ceAtimation was
calculated using the VGG16 model and the patiesgdha
estimation was determined to be positive for astleme
positive output from a slice-based decision orptbeability
obtained through the VGG16 model by mimicking tie-s
ation in actual clinical practice.

RESULTS

Table 3 shows the average and standard deviatioesva
of each performance estimated from the outer I6apfold
NCYV as per the observed brain region and evaluatam
dards. In order to compare the performance as vl Gt
a slice-based standard, the performance of the Intivate
only observed the gray matter region was highealiotme
performance metrics as compared to that of the haide
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serving the whole brain region (accuracy 92.398860,  vs. 70.00).

sensitivity 87.93 vs. 85.76, and specificity 98/8495.32). In order to evaluate the discrimination power & shlec-

In contrast, the performances as per masking atianp  ted model that estimates the slice-level posteriobability
based standard were almost similar (89.78 vs. 8%2fpe-  and the rule-based estimation approach, the adea aorve
cially in terms of the accuracy; however, the sisttgiwhen (AUC) was calculated using receiver operating dtaristic
the GM region was included was lower compared terwh (ROC) analysis for each experiment. The AUC when th
the white matter region was included (93.97 vsl@9Fur-  VGG16 model observed only the gray matter regios wa
ther, the specificity on inclusion of the GM regiwas higher  slightly higher as compared to when the whole bvedas
than that when the white matter region was incly@&db7  observed for both the slice-based and patient-lidesgdion

Sensitivity

Sensitivity

100

80

0]
o

N
o

20

100

80

[0)]
o

N
o

N
o

A. Slice-based Without GM

L

Ol L | - L | PR |

0 20 40 60 80 100
100-Specificity

C. Patient-based Without GM

-

|

S——

] L 1 i | I P |

0 20 40 60 80 100
100-Specificity

B. Slice-based With GM
100 |- /_’_’___,_,__——

80 H

0]
o
T

Sensitivity
i
o

—

OF - M T 1 1 |
0 20 40 60 80 100

100-Specificity

D. Patient-based With GM

100 |-
]

80 H

Sensitivity
(o)]
o
—

N
o
1

[\S]
(=]
1

0H .lvA.l 1 1 1
0 20 40 60 80 100

100-Specificity

Fig. 2. Receiver operating characteristic (ROC) argsis for the classification on several experimentdice-based/patienbased an
with/without gray matter masking. The dotted line on the figure shows 95% confident@val ofthe ROC curves. A and B show
results of the classification performance thatstilected model estimates in a slice-based staadentding to the masking gray matter. C
and D show the ROC curve of the rule-based cleasdin that mimics the condition in actual clinipedctice using slicbased estimatic
from the A and B processes. Values for the areanthé curve for A, B, C, and D were 0.972, 0.97873, and 0.983, respectively.
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Fig. 3. Amyloid PET images used in this studysig. 3-A shows the raw PET slice after acquisitieig. 3B is the cropped image ¢
registered into Fig. 3-C space of the 18F FBB Rfiptate. And Fig. 3-D is mask of gray matter ola@ifiom Fig. 3-C (threshold = 0.5).

process (Fig. 2). Aand B show the results of lsification
performance that the selected model estimateckislite-
based standard according to masking gray mattend®d
show the ROC of the rule-based classification, iching
the situation in an actual clinical setting usitigesbased
estimations from A and B processes. AUC for A, Bal
D were 0.972, 0.976, 0.973, and 0.983, respectively

Hyper-parameters determined from an inner looghef t
NCV and used for the estimation of slice-basedsifieation
performance are summarized in Table 3. In the bezmo-
didates of the Bayesian optimizer, hyper-parametkres
were higher than those while considering the whodén,
except the hidden nodes. Moreover, comparing tHferpe
mance estimation in each inner loop in the NCViedpb
the experiment, the variance of the estimated pagoce
is less than the variance of the hyper-parameters.

DISCUSSION

In the conventional quantitative analysis of antd/BET
as per the pathological deposition patterns of aichylaque,
studies have considered a region of gray mattieaggion
of interest (Choi et al., 2016). However, the diegpning
approach is a process of learning a mathematioatifun
with millions of parameters in a data set and figdi mean-
ingful feature from the input data. This approaek heen
applied for various purposes in the field of mewkcivith
remarkable achievements (Gulshan et al., 2016)egheri-

(B (C) (D £
BOC
\ --‘ . '

mental results show that both, the sensitivity spetificity
are improved when a pre-trained VGG16 model iskr
by inputting the data of the gray matter separditeiy that
of the whole brain in the slice-based classificatithis may
indicate that the features obtained by observihgtba gray
matter involve more distant and discriminating diea$ be-
tween the B-positive and BA-negative groups than those
obtained by observing the whole brain.

In addition, in our results, the pre-trained VGGh6wed
about 90% accuracy, suggesting that the methodené-g
rating amyloid PET template for brain spatial ndiragion
and mask for gray matter using only the functiormege
may be enough for performing quantitative analybfgs
suggests that it can be applicable as a quantitatisthod
in cases where the anatomical image is not aveildibre-
over, even though the count normalization for dabk of
the reference region, such as cerebellar gray matis not
applied in our data set, the pre-trained VGG16 irsumved
a discriminating performance, including visual eedibon
of a human clinician using the contrast of activétiher than
the count of activity.

The rule of subject-based determinations from kbe-s

based output of the pre-trained VGG16 model was con

sidering the highest posterior probability fromisa bf 36
slice-based posterior probabilities for each suljebe 8-
positive as an ultimate posterior probability fosubject.
Therefore, the false-positive rate for each sliaats a con-
siderable effect on the false-positive rate ofsthitgect-based
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decision. Although the sensitivity of the subjeased deci-
sion without GMM was higher than that of the sublgsed
decision with GMM, the specificity was lower. Iretlntire
outer loop of the NCV, 18 out of 19 cases wereriewbly
identified with BAPL 1, and 1 case was incorreatintified
with BAPL 2 for the subject-based experiment withgnay
matter; 11 out of the 18 cases were incorrect BAPand
7 other cases were identified with BAPL 2 for tibjsct-
based experiment with gray matter. Therefore, dartssearch
is required in a follow-up study on how to distirgjube-
tween BAPL 1 and BAPL 2 rather than BAPL 3.

We trained the pre-trained VGG16 model to estirtiae
posterior probabilities of vpositive for each slice of a sub-
ject. Moreover, the posterior probabilities for leatibject
were estimated using the calculated posterior pitilies,
and we evaluated the performance as a predictideiro
particular, we performed pre-processing, includipgtial
normalization and acquisition of GMM using only dtianal
images. Finally, we compared the performance otlge
sifiers considering only the gray matter or the l@hwain.
The data set used in the experiment was that osufjacts
imaged using 18F-FBB PET. We found that the sleseld
classification with GMM showed better performarmedis-
tinguishing between thefApositive and A-negative groups.
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