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Amyloid positron emission tomography (PET) allowslgand accurate diagnosis in suspected casefzbéifer's
disease (AD) and contributes to future treatmertglin the present study, a method of implemeatitiggnostic system
to distinguistB-Amyloid (Ap) positive from A8 negative with objectiveness and accuracy was gempasing a machine
learning approach, such as the Principal Compdkmatysis (PCA) and Support Vector Machine (SV#-Florbetaben
(FBB) brain PET images were arranged in control@atéénts (total n = 176) with mild cognitive impaent and AD.
An SVM was used to classify the slices of registET image using PET template, and a system watedrto diagnose
patients comprehensively from the output of thiméeh model. To compare the per-slice classificatioea PCA-SVM
model observing the whole brain (WB) region shothechighest performance (accuracy 92.38, spegifi2it37, sensitivity
92.87), followed by SVM with gray matter maskingM@®l) (accuracy 92.22, specificity 92.13, sensitiv@t®.28) for
AP positivity. To compare according to per-subjeetssification, the PCA-SVM with WB also showed thghkst
performance (accuracy 89.21, specificity 71.67sisigity 98.28), followed by PCA-SVM with GMM (accacy 85.80,
specificity 61.67, sensitivity 98.28) foripositivity. When comparing the area under cunigd@, PCA-SVM with WB
was the highest for per-slice classifiers (0.988) the models except for SVM with WM were higlfiesthe per-subject
classifier (1.000). We can classiff-Florbetaben amyloid brain PET image fd¥ positivity using PCA-SVM model,
with no additional effects on GMM.
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causes of dementia among the elderly populatiorisaad
INTRODUCTION progressive and neurodegenerative disease thatteadg-
nitive impairments, memory loss, and behaviorabjenms.
Alzheimer's disease (AD) is one of the most common B-Amyloid (Ap) is a typical pathologic feature found in the
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brain of all patients with AD (Haass et al., 20B@nasekaran
et al.,, 2015). A cascade has been postulated to initiate
progressive f changes in the brain, leading to neurode-

generation and dementia (Barthel et al., 2011)réfbee,
imaging techniques that enable observation of #gide-
position can help in assessing the cortical amydaidienin
vivo as well as facilitate early and accurately diagndB.
Therefore, an amyloid PET, obtained using vari@aior
pharmaceutical modalities, plays an importantirotbein
vivo detection of AD and is also used to identify appeate
therapies as well as diagnose potential AD patients

Table 1. Demographic details of the subjects used for xipere
ent

Characteristics BAPLL BAPL2 BAPL3 Total
No. of patients 60 53 60 173
Mean (SD) of 67.55 73.02 69.08 69.76
age (9.01) (5.64) (8.83) (8.33)
No. slice of
Ap-negative 2,160 931 0 3,091
No. slice of
Ap-positive 0 977 2,160 3,137

"BAPL: braing-amyloid plaque load

®F-Florbetaben (FBB) amyloid PET is one of the typesposterior probability of B-positive slices at the axial plane

of neuroimaging modalities used to deteftglaque. The
physician evaluates the cerebral cortical grayenatitake
in four areas (temporal, occipital, frontal, andgdal regions)
of the brain in the axial plane of tH&-FBB amyloid PET
using the brain beta-amyloid plaque load (BAPL)risgp
system (1 = no Bload, 2 = minor A load, 3 = significant
AP load) to diagnose whether the casefigpasitive or not
(Barthel et al., 2011; Lundeen et al., 2018).

However, although the physician's visual assessofent

medical images is the most reliable way to evalimsges,
it is time-consuming and labor-intensive during geanter-
pretation and prevents physician's goal in redutiagoom
for inter-observer problems in visually evaluatiignificant
differences of image contrast (Brucher et al., 20IBere-
fore, the need for quantitative indicator has bregnired.

In one aspect of a medical image during signalgesing,
various studies on improving the discrimination powy
appropriately selecting the data characteristiag Heeen
conducted. In recent years, several studies hawerdgrated
the potential of developing biomedical assessnuats to
improve the quantification of medical image evatwatising
machine learning, such as Support Vector Machit@)S
or Neural Network, which are used to quantitatizetalyze
various medical images (Gulshan et al., 2016; Lakba
al., 2017; Taylor et al., 2017).

In the present study, a predictive model using SAfid
a simple rule-based decision that predicts tRepdsitive
and A3-negative status were designed. The minpidad
characteristics in BAPL 2 can be partially obserirethe
voxel unit. Therefore, a model was designed toredé the

resampled (1550") from voxels to mimic the clinical prac-
tice. The performances before and after gray makhsking
(GMM) were also compared.

MATERIALS AND METHODS
Subjects

An experiment on the retrospective cohort in thpdde
ment of Nuclear Medicine, Dong-A University Medical
Center (DANM), was conducted from November 2015 to
May 2018. The total number of subjects in the cohais
173, which consisted of 60 subjects with BAPL ssak&l
(BAPL 1), 53 with BAPL scores of 2 (BAPL 2), and 60
with BAPL scores of 3 (BAPL 3). Therefore, accorgio
the definition of the BAPL scoring system, imagesif 60
subjects who were negative fopAand 113 subjects who
were positive for # were used to train and validate our
predictive model. Specific details of the study gapions
are shown in Table 1.

Labeling and sampling

All evaluated clinical diagnoses 8F-FBB PET images
and BAPL scores in the DANM dataset were organized
cooperation with the Department of Neurology, Déng-
University Medical Center. All images of subjected in
this study were evaluated on the same criterigomegcor-
tical tracer uptake (RCTU) (1, no tracer uptaken8derate
tracer uptake; 3, pronounced tracer uptake) and_B&éting
system. RCTU score is decided according to thékestizate
of gray matter and white matter in four regionsnfal cortex,
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lateral temporal cortex, posterior cingulate cdprecuneus,
and parietal cortex. The BAPL score of a subjetihaly
determined by combining the results of the RCTUesby
region (Seibyl et al., 2016; Bullich et al., 201&¢cording
to the current diagnostic criteria fSiF-FBB PET image
(Piramal Imaging Limited, 2014), BAPL 1 is consiglér
AB-negative, and BAPL 2 and BAPL 3 are considergd A
positive. And such a decision depends on the piaysic
visual assessment of each slice on the axial plérezefore,
the slices were respectively indexed in the axaigfor all
dataset, and one physician from the DANM perforitied
visual assessment after sampling the pre-deternsiies
(a total of 36 slices from 50 50" slices).

Mapping (SPM8) module. The result images obtaineah f
SPM8 have three-dimensional voxels size oKB9<68
with a thickness of ‘222 (mm).

We also considered GMM, obtained from the PET tem-
plate used for spatial normalization, as well a&s\fnole
brain (WB) volume. Detailed appearance and chaistitse
for acquired'®F-FBB PET and PET template have been
shown in our previous study (Kang et al., 2018).

In general, classification problems, including iagcog-
nition fields, can be subdivided into feature esticm and
classification problems; therefore, these are maipplied
in the medical field (Gongalves et al., 2016; Xtale 2016;
Segovia et al., 2018). Feature extraction was pteirusing

The Nested Cross Validation (NCV) was used as a perPrincipal Component Analysis (PCA) prior to solvitig

formance estimation scheme to validate the hypampater
of a model and test it using the entire datasetfset al.,
2006). In addition, cluster bootstrapping was penéd to
preserve patient independence during the sampliagep
(Sherman et al., 2007) and stratified samplingémh subset
to obtain an almost similar distribution for ther-pabject
BAPL score groups during the sampling proceshNCV.
The number of folds was determined as observalslerpe
mance variables while maintaining an appropriat@xee
in the limited dataset; therefore, four-fold NCVsangelected
as the final scheme for performance estimation.

Data pre-processing

classification problem using SVM.

This feature extraction was performed outside ttero
and inner loops of the NCV, in which the inner |aperates
a wrapper algorithm that searches hyper-paraneyguer-
forming the holdout again on the subset from thereen
dataset for hyper-parameter validation, such dssgarch or
random search algorithm (Pedregosa et al., 201tjsia et
al., 2012; Taylor et al., 2017). In this work, Bsigaé optimi-
zation (Snoek et al., 2012) was used as the wrajgmaithm.
In each outer loop, the hyper-parameter ultimatietier-
mined from each inner loop was used to selectaherbodel
in estimating the generalization performance (Vaand
Simon, 2006). All source codes for data preprongssiter

The final A3 PET images obtained from the scanner andspatial normalization were written in packages anmnted

given to a physician for the diagnosis measured<400
X110 (height>< width X< depth) with a thickness of 1.09

x1.09<1.5 (mm). Before fitting the selected machine learn

ing function to the PET dataset, a classic pregsinog was
performed to make the functional characteristicthefbrain

using Python and scikit-learn, a set of machineniag
library (Python 3.5.2, scikit-learn 0.19.1).

Support vector machine

Since other classifiers, such as neural networksde-

prominent in minimized morphological and anatomical signed to minimize the error rate, SVM has showh lgen-

differences between the patient and the normal $eest,

eralization performance by searching for a decismmdary

we made &*F-FBB PET template through an average of that maximizes the margin between two classes {Kagin

21 NC and 9 AD subjects who imag¥8-FBB Amyloid
PET in DANM. Moreover, all datasets were mappethen
same template space. Finally, count normalizatimction
was applied for each dataset. The above prepnogessiich
applies the same data individually, was performsitigu
MATLAB (Version 9.4, 0.813654) and Statistical Raedric

al., 1998; Oh et al., 2008).

In order to classify the preprocessed amyloid P&xel
data, the SVM was selected in our experiment, yigei
parameters were searched through a Bayesian optimiz
and validation phase was performed in the inngy tdathe
NCV. The generalization performance of the modebsen
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Table 2.Comparison of performance according to featured fmsaliscrimination (%)

Per-slice performance

Per-subject performance

Features
Accuracy Specificity Sensitivity Accuracy Specitici Sensitivity
PCA-SVM, WE 92.38 92.87 92.03 89.21 71.67 98.28
PCA-SVM, GM 92.00 91.34 92.44 85.80 61.67 98.28
SVM, WB 91.03 91.67 90.59 82.39 58.33 94.83
SVM, GM 92.22 92.13 92.28 82.96 53.33 98.28

"PCA: principle component analysiS\VM: support vector machin@VB: whole brain, GM: gray matter

hyper-parameter was determined in the inner loapesé-
mated in the outer loop of the NCV. The hyper-partam
space searched using the Bayesian optimizer wasekKer
categorical variable (among "linear”, "rbf", analp); C,
the strength of penalty (from 1 to 1le + 2); gamanpara-
meter for Gaussian kernel: Radial Basis Functi@HjRfrom
le-4 to 1e-1); and the number of features from Ff@#n
10 to 5,000). Before statistically estimating thay8sian
optimization, the initial candidate was arbitradigtermined
by the practitioner as "linear" for the type of ey 1 for C,
1 for gamma, and 100 for the number features fr@A.P
Specific details are presented in Table 2. The rurob
searches for one inner loop, validation phasedcchdor a
better hyper-parameter, was 20 times, and the &gpéun-
provement was used to acquire functions during Slage
optimization (Makus et al., 1978).

In the present study, the per-slice posterior gaitiba
for each sample was ultimately estimated to pepdsitive
and per-subject posterior probability to bgpositive using
the selected SVM model (Platt et al., 1999). Adstimating

from PCA-SVM and SVM for § positivity were used to
estimate the receiver operating characteristic (R€Bre
and area under curve (AUC) analysis and were cardpar
using a theory developed for generalized U-stiglel ong

et al., 1988). Continuous variables estimated titrothe
NCV (performances of selected model and hyper-petem
candidates such as C, gamma, and number featuR&SAHf
were tested for normality through the Shapiro-Vidkst.
Statistical comparison results were performed Ingidering
the significance level of 0.05.

RESULTS

Each value shown in Table 2 was the average of peh
formance estimated from the outer loop of four-WIGV
according to the observed brain region and evaluatan-
dards as per-slice or per-subject. To compare ¢hslige
classification, the PCA-SVM with WB showed the tegh
performance (accuracy 92.38, specificity 92.87sitigity
92.87), followed by SVM with GMM (accuracy 92.2pesi-

the per-slice B-positive, our system calculates per-slice ficity 92.13, sensitivity 92.28) for \positivity. On the con-

predictions based on the 36 per-slice probabilitidse A3-
positive per person by mimicking the clinical preetdeci-
sions. Here if at least one of the 36 slices sh@\iedositive
result, the subject was assigned gspasitive. The perfor-
mances, such as accuracy, sensitivity, and spgcifice
estimated using 50% of the cutoff fopAositive.

Statistical analysis

The data collected and used in this experiment swgre
marized and analyzed using MedCalc version 18\eb{
Calc Software). The scores, posterior probabilggsnated

trary, when comparing according to per-subjectdleation,

the PCA-SVM WB also showed the highest performance
(accuracy 89.21, specificity 71.67, sensitivity 283, fol-
lowed by PCA-SVM with GMM (accuracy 85.80, spedific
61.67, sensitivity 98.28) forfpositivity.

When comparing the ROC curve at per-slice standard,
PCA-SVM with WB shows the largest AUC (0.992, 95% C
0.985-0.996), followed by PCA-SVM with GMM (0.990,
95% CI: 0.984-0.995) for A positivity. On the contrary,
the AUCs at per-subject standard were highest it 8ZM
with WB, PCA-SVM with GMM, and SVM with GMM
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Fig. 1. Receiver operating characteristic (ROC) argsis to classify several experimentgA) and (B) show the comparison BIOC
curve according to their discrimination power atgliee and per-subject standard, respectivelyign1-A, each ofarea under curve (AU
were PCA_SVM_HB (0.992, 95% CI: 0.986.996), PCA_SVM_GM (0.990, 95% CI: 0.984.995), SVM_HB (0.967, 95% CI: 0.956
0.976), and SVM_GM (0.985, 95% CI: 0.97®991), and in Fig. 1-B, each of them were PCA_SWR (1.000, 95% CI: 0.9201.000)
PCA_SVM_GM (1.000, 95% CI: 0.92.000), SVM_HB (0.982, 95% CI: 0.887.000), and SVM_GM (1.000, 95% CI: 0.920
1.000). The pairwise comparison of ROC curvesasvshin Table 3.

Table 3.Pairwise comparison of ROC curves for each mdd=deh standard

Comparisons Per-slice (DBAP-value) Per-subject (DB&-value)
PCA-SVM, WB~ PCA-SVM, GM" 0.0013P =0.3019 0.000@ = 1.0000
PCA-SVM, WB~ SVM, WB~ 0.0249pP < 0.0001 0.0184 =0.2354
PCA-SVM, WB~ SVM, GM 0.0072P = 0.0010 0.000@ = 1.0000
PCA-SVM, GM~ SVM, WB 0.0236P < 0.0001 0.0184 =0.2454
PCA-SVM, GM~ SVM, GM 0.0059P = 0.0001 0.000@ = 1.0000
SVM, WB ~ SVM, GM 0.0177P < 0.0001 0.0184 = 0.2454

H*DBA: difference between areas . .
PCA: principle component analysis3VM: support vector machine\WB: whole brain, GM: gray matter

(1.000, 95% CI: 0.9201.000), respectively, followed by followed by PCA-SVM with GM~ SVM with GM (0.0059,
SVM with WB (0.982, 95% CI: 0.8871.000). Specific P = 0.0001) and PCA-SVM with WB- SVM with GM
details of ROC curves in this study are shown @ Fi (0.0072,P = 0.0010). PCA-SVM with WB~ PCA-SVM
The pairwise comparison results of the ROC curges f with GM showed no significant differences (0.00P35
each experimental model are shown in Table 3. @n th0.3019). However, no significant differences websesved
pairwise comparison at the per-slice standardjiffezences  at per-subject standard in all cases.
in the AUCs between the SVM with WB and other three Hyper-parameters ultimately determined from eanbrin
models (PCA-SVM with WB, PCA-SVM with GM, and loop of the NCV through the Bayesian optimizer ased to
SVM with GM) were the most significant, respectivel estimate per-slice classification performance anensarized
(0.0249P < 0.0001; 0.0236? < 0.0001; 0.017R < 0.0001), in Table 4. Regardless of the experimental moldelpbly-
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Table 4.Hyper-parameter statistics searched by Bayesi@miagtion after each inner loop

PCA-SVM” SVM
ltem — — Total
WB GM WB GM
Kernel 3:0:13 5:0:11 3:0:13 5:0:11 16:0:48
C 23.57 (27.79) 25.17 (29.35) 31.53 (38.22) 25.47 (32.92) 26.43 (31.69)
Gamma 0.0089 (0.0090) 0.0228 (0.0368)  0.0306 (0.0506) 0.0364 (0.0471)  0.0247 (0.0398)
No. PCA feature 2,334 (1,331) 1,720 (1,552) - - 2,027 (1,456)
Accuracy (%) (SD) 94.99 (2.36) 94.25 (2.45) 93.75 (2.07) 93.46 (3.11) 94.11 (2.53)
95 % ClI 93.84-96.15 93.05-95.45 92.73-94.77 91.94-94.98 93.49-94.73

:Kernel: selected kernel as categoiical varialiedii: radial basis; function: polynomial)
PCA: principle component analysisSVM: support vector machineWB: whole brain, GM: gray matter

nomial kernel was most commonly adopted, followgd b in Table 2. In order to improve this specificitgher rules

linear kernel. In addition, the RBF kernel was adbopted
even once in all cases (linear:RBF:polynomial 0¥R),
and the validation performance on each inner loofhé
NCV was estimated. The hyper-parameter of theserexp
ments as continuous variables such as C, gammauamnd
ber features of PCA estimated through the NCV deréed
normality by Shapiro-Wilk test but their performardistri-
bution was accepted as normality.

DISCUSSION

Because of the pathological nature of AD, the diagn
of subject's brain must be taken into accountdrestactic
coordinates. In order to analyze the 3-dimensianfal-
mation of a object, there is a study in which goregch to
extract the feature from the 3-dimensional vox¢had a
sample is applied to the brain (Zhang et al., 2@&lanc-
Durand et al., 2017). Because these studies dpraeide
information per slices, there is a limit to prowidiinfor-
mation that is sympathetic to physicians and ptgtien

In order to create a model that performs the pes-sl
classification, only visually determined per-sligAPL 2 in
the per-subject BAPL 2 group were considered asdato
fit and test a model, and visually determined pee-8APL
1 included in the per-subject BAPL 2 group wereuseatd as
the dataset. Regarding the methods used duringxjiesi-

ment to determine the subject’B deposition status, even a

single misclassification may have had a large impadhe
specificity. Therefore, specificity was lower theamsitivity

to test per-subject discrimination should be im@sted.

In a conventional quantitative analysis of amylBET
according to the pathological deposition pattefrth® amy-
loid plaque, studies have considered the gray mast¢he
region of interest (Choi et al., 2016). On the gliee classi-
fication shown in Table 3, because the pairwisepasisons
show significant differences in both cases thatl IBEA-
SVM, the feature seems to be extracted using thieget
slice. In addition, in cases that did not use P& perfor-
mance of SVM with GMM was significantly improved.
Moreover, the model with PCA showed no significaet-
formance improvement according to WB and GM. Thus,
PCA and WB can extract features with a similar ritisie
nation level.

The results of hyper-parameter determined in therin
loop showed a validation performance that was thigh
higher than that of the generalization. Therefskéyl seems
to be able to show the best performance, while camiging
the performance properly instead of falling int@ditting.
The performance estimates shown in the inner Iddhe
NCV for each experimental model followed the nordist
tribution and showed a somewhat constant Cl, utii&elis-
tribution of the hyper-parameters. In the quantigsdnalysis

of ®F-FBB images, the dataset to be fitted seems to be

more important than the influence of the hyper-peters
in the selected model.

There were several machine learning techniquearayed
loid radiotracers for detection of Alzheimer's dise. 18F
FDG PET imaging was used for computer aided AlzBesm
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diagnosis. By SVM, the 88.24% accuracy in idemtifymild
AD, with 88.64% specificity, and 87.70% sensitivigyob-
tained (lllan IA et al., 2011). A computer aide@gthiosis
(CAD) system for the Alzheimer's disease detectiais
performed with a 18F-FDG and Pittsburg CompoungiB)(
PET. In the first, FDG results got better reaclingccuracy
of 94.74%, in the second set both FDG and PIB ragge
improved reaching a maximum accuracy of 92.86%\&ha
etal., 2012).

CONCLUSIONS

We create SVM model to estimate the posterior pro-
babilities to be B-positive for each slices of a subject. And
the posterior probabilities for each subject westireated
using the calculated per-slice posterior probadsliand we
evaluated the performance of our model accorditgam
region and use of PCA. The data set used in theriexgnt
was 173 subject imagétF-FBB PET. The results of this
experiment showed that the per-slice classificatiiim PCA
shows better performance to classiffj-positive and g-
negative groups. And GM in the axial plane can feaure
that helps discriminate betweefi-positive and A-negative
group for quantitative analysis using machine liegrn
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