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Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's 
disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system 
to distinguish β-Amyloid (Aβ) positive from Aβ negative with objectiveness and accuracy was proposed using a machine 
learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). 18F-Florbetaben 
(FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. 
An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose 
patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM 
model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 
92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for 
Aβ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest 
performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, 
specificity 61.67, sensitivity 98.28) for Aβ positivity. When comparing the area under curve (AUC), PCA-SVM with WB 
was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject 
classifier (1.000). We can classify 18F-Florbetaben amyloid brain PET image for Aβ positivity using PCA-SVM model, 
with no additional effects on GMM. 
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INTRODUCTION 
 

Alzheimer's disease (AD) is one of the most common 

causes of dementia among the elderly population and is a 

progressive and neurodegenerative disease that leads to cog- 

nitive impairments, memory loss, and behavioral problems. 

β-Amyloid (Aβ) is a typical pathologic feature found in the 
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brain of all patients with AD (Haass et al., 2007; Gunasekaran 

et al., 2015). Aβ cascade has been postulated to initiate 

progressive Aβ changes in the brain, leading to neurode- 

generation and dementia (Barthel et al., 2011). Therefore, 

imaging techniques that enable observation of brain Aβ de- 

position can help in assessing the cortical amyloid burden in 

vivo as well as facilitate early and accurately diagnose AD. 

Therefore, an amyloid PET, obtained using various radio- 

pharmaceutical modalities, plays an important role in the in 

vivo detection of AD and is also used to identify appropriate 

therapies as well as diagnose potential AD patients. 
18F-Florbetaben (FBB) amyloid PET is one of the types 

of neuroimaging modalities used to detect Aβ plaque. The 

physician evaluates the cerebral cortical gray matter uptake 

in four areas (temporal, occipital, frontal, and parietal regions) 

of the brain in the axial plane of the 18F-FBB amyloid PET 

using the brain beta-amyloid plaque load (BAPL) scoring 

system (1 = no Aβ load, 2 = minor Aβ load, 3 = significant 

Aβ load) to diagnose whether the case is Aβ-positive or not 

(Barthel et al., 2011; Lundeen et al., 2018). 

However, although the physician's visual assessment of 

medical images is the most reliable way to evaluate images, 

it is time-consuming and labor-intensive during image inter- 

pretation and prevents physician's goal in reducing the room 

for inter-observer problems in visually evaluating significant 

differences of image contrast (Brucher et al., 2015). There- 

fore, the need for quantitative indicator has been required. 

In one aspect of a medical image during signal processing, 

various studies on improving the discrimination power by 

appropriately selecting the data characteristics have been 

conducted. In recent years, several studies have demonstrated 

the potential of developing biomedical assessment tools to 

improve the quantification of medical image evaluation using 

machine learning, such as Support Vector Machine (SVM) 

or Neural Network, which are used to quantitatively analyze 

various medical images (Gulshan et al., 2016; Lakhani et 

al., 2017; Taylor et al., 2017). 

In the present study, a predictive model using SVM and 

a simple rule-based decision that predicts the Aβ-positive 

and Aβ-negative status were designed. The minor Aβ load 

characteristics in BAPL 2 can be partially observed in the 

voxel unit. Therefore, a model was designed to estimate the 

posterior probability of Aβ-positive slices at the axial plane 

resampled (15~50th) from voxels to mimic the clinical prac- 

tice. The performances before and after gray matter masking 

(GMM) were also compared. 

 

MATERIALS AND METHODS 

Subjects 

An experiment on the retrospective cohort in the Depart- 

ment of Nuclear Medicine, Dong-A University Medical 

Center (DANM), was conducted from November 2015 to 

May 2018. The total number of subjects in the cohort was 

173, which consisted of 60 subjects with BAPL scores of 1 

(BAPL 1), 53 with BAPL scores of 2 (BAPL 2), and 60 

with BAPL scores of 3 (BAPL 3). Therefore, according to 

the definition of the BAPL scoring system, images from 60 

subjects who were negative for Aβ and 113 subjects who 

were positive for Aβ were used to train and validate our 

predictive model. Specific details of the study populations 

are shown in Table 1. 

Labeling and sampling 

All evaluated clinical diagnoses of 18F-FBB PET images 

and BAPL scores in the DANM dataset were organized in 

cooperation with the Department of Neurology, Dong-A 

University Medical Center. All images of subjects used in 

this study were evaluated on the same criteria; regional cor- 

tical tracer uptake (RCTU) (1, no tracer uptake; 2, moderate 

tracer uptake; 3, pronounced tracer uptake) and BAPL scoring 

system. RCTU score is decided according to the uptake state 

of gray matter and white matter in four regions; frontal cortex, 

Table 1. Demographic details of the subjects used for the experi-
ment 

 Characteristics BAPL* 1 BAPL 2 BAPL 3 Total 

No. of patients 60 53 60 173 

Mean (SD) of 
age 

67.55 
(9.01) 

73.02 
(5.64) 

69.08 
(8.83) 

69.76 
(8.33) 

No. slice of 
Aβ-negative 2,160 931 0 3,091 

No. slice of 
Aβ-positive 0 977 2,160 3,137 

*BAPL: brain β-amyloid plaque load 
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lateral temporal cortex, posterior cingulate cortex/precuneus, 

and parietal cortex. The BAPL score of a subject is finally 

determined by combining the results of the RCTU score by 

region (Seibyl et al., 2016; Bullich et al., 2017). According 

to the current diagnostic criteria for 18F-FBB PET image 

(Piramal Imaging Limited, 2014), BAPL 1 is considered 

Aβ-negative, and BAPL 2 and BAPL 3 are considered Aβ-

positive. And such a decision depends on the physician's 

visual assessment of each slice on the axial plane. Therefore, 

the slices were respectively indexed in the axial plane for all 

dataset, and one physician from the DANM performed the 

visual assessment after sampling the pre-determined slices 

(a total of 36 slices from 15th to 50th slices). 

The Nested Cross Validation (NCV) was used as a per- 

formance estimation scheme to validate the hyper-parameter 

of a model and test it using the entire dataset (Varma et al., 

2006). In addition, cluster bootstrapping was performed to 

preserve patient independence during the sampling phase 

(Sherman et al., 2007) and stratified sampling for each subset 

to obtain an almost similar distribution for the per-subject 

BAPL score groups during the sampling process for the NCV. 

The number of folds was determined as observable perfor- 

mance variables while maintaining an appropriate variance 

in the limited dataset; therefore, four-fold NCV was selected 

as the final scheme for performance estimation. 

Data pre-processing 

The final Aβ PET images obtained from the scanner and 

given to a physician for the diagnosis measured 400×400

×110 (height × width × depth) with a thickness of 1.09

×1.09×1.5 (mm). Before fitting the selected machine learn- 

ing function to the PET dataset, a classic preprocessing was 

performed to make the functional characteristics of the brain 

prominent in minimized morphological and anatomical 

differences between the patient and the normal scan. First, 

we made a 18F-FBB PET template through an average of 

21 NC and 9 AD subjects who imaged 18F-FBB Amyloid 

PET in DANM. Moreover, all datasets were mapped on the 

same template space. Finally, count normalization function 

was applied for each dataset. The above preprocessing, which 

applies the same data individually, was performed using 

MATLAB (Version 9.4, 0.813654) and Statistical Parametric 

Mapping (SPM8) module. The result images obtained from 

SPM8 have three-dimensional voxels size of 95×79×68 

with a thickness of 2×2×2 (mm). 

We also considered GMM, obtained from the PET tem- 

plate used for spatial normalization, as well as the whole 

brain (WB) volume. Detailed appearance and characteristics 

for acquired 18F-FBB PET and PET template have been 

shown in our previous study (Kang et al., 2018). 

In general, classification problems, including image recog- 

nition fields, can be subdivided into feature extraction and 

classification problems; therefore, these are mainly applied 

in the medical field (Gonçalves et al., 2016; Xue et al., 2016; 

Segovia et al., 2018). Feature extraction was attempted using 

Principal Component Analysis (PCA) prior to solving the 

classification problem using SVM. 

This feature extraction was performed outside the outer 

and inner loops of the NCV, in which the inner loop operates 

a wrapper algorithm that searches hyper-parameters by per- 

forming the holdout again on the subset from the entire 

dataset for hyper-parameter validation, such as grid search or 

random search algorithm (Pedregosa et al., 2011; Bergstra et 

al., 2012; Taylor et al., 2017). In this work, Bayesian optimi- 

zation (Snoek et al., 2012) was used as the wrapper algorithm. 

In each outer loop, the hyper-parameter ultimately deter- 

mined from each inner loop was used to select the best model 

in estimating the generalization performance (Varma and 

Simon, 2006). All source codes for data preprocessing after 

spatial normalization were written in packages implemented 

using Python and scikit-learn, a set of machine learning 

library (Python 3.5.2, scikit-learn 0.19.1). 

Support vector machine 

Since other classifiers, such as neural networks, are de- 

signed to minimize the error rate, SVM has shown high gen- 

eralization performance by searching for a decision boundary 

that maximizes the margin between two classes (Vapnik et 

al., 1998; Oh et al., 2008). 

In order to classify the preprocessed amyloid PET voxel 

data, the SVM was selected in our experiment, the hyper-

parameters were searched through a Bayesian optimizer, 

and validation phase was performed in the inner loop of the 

NCV. The generalization performance of the model whose 
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hyper-parameter was determined in the inner loop was esti- 

mated in the outer loop of the NCV. The hyper-parameter 

space searched using the Bayesian optimizer was Kernel, a 

categorical variable (among "linear", "rbf", and "poly"); C, 

the strength of penalty (from 1 to 1e + 2); gamma, a para- 

meter for Gaussian kernel: Radial Basis Function (RBF) (from 

1e-4 to 1e-1); and the number of features from PCA (from 

10 to 5,000). Before statistically estimating the Bayesian 

optimization, the initial candidate was arbitrarily determined 

by the practitioner as "linear" for the type of kernel, 1 for C, 

1 for gamma, and 100 for the number features from PCA. 

Specific details are presented in Table 2. The number of 

searches for one inner loop, validation phase to search for a 

better hyper-parameter, was 20 times, and the expected im- 

provement was used to acquire functions during Bayesian 

optimization (Moćkus et al., 1978). 

In the present study, the per-slice posterior probability 

for each sample was ultimately estimated to be Aβ-positive 

and per-subject posterior probability to be Aβ-positive using 

the selected SVM model (Platt et al., 1999). After estimating 

the per-slice Aβ-positive, our system calculates per-slice 

predictions based on the 36 per-slice probabilities to be Aβ-

positive per person by mimicking the clinical practice deci- 

sions. Here if at least one of the 36 slices showed Aβ-positive 

result, the subject was assigned as Aβ-positive. The perfor- 

mances, such as accuracy, sensitivity, and specificity are 

estimated using 50% of the cutoff for Aβ-positive. 

Statistical analysis 

The data collected and used in this experiment were sum- 

marized and analyzed using MedCalc version 18.9.1 (Med- 

Calc Software). The scores, posterior probabilities estimated 

from PCA-SVM and SVM for Aβ positivity were used to 

estimate the receiver operating characteristic (ROC) curve 

and area under curve (AUC) analysis and were compared 

using a theory developed for generalized U-statistics (DeLong 

et al., 1988). Continuous variables estimated through the 

NCV (performances of selected model and hyper-parameter 

candidates such as C, gamma, and number features of PCA) 

were tested for normality through the Shapiro-Wilk test. 

Statistical comparison results were performed by considering 

the significance level of 0.05. 

 

RESULTS 
 

Each value shown in Table 2 was the average of each per- 

formance estimated from the outer loop of four-fold NCV 

according to the observed brain region and evaluation stan- 

dards as per-slice or per-subject. To compare the per-slice 

classification, the PCA-SVM with WB showed the highest 

performance (accuracy 92.38, specificity 92.87, sensitivity 

92.87), followed by SVM with GMM (accuracy 92.22, speci- 

ficity 92.13, sensitivity 92.28) for Aβ positivity. On the con- 

trary, when comparing according to per-subject classification, 

the PCA-SVM WB also showed the highest performance 

(accuracy 89.21, specificity 71.67, sensitivity 98.28), fol- 

lowed by PCA-SVM with GMM (accuracy 85.80, specificity 

61.67, sensitivity 98.28) for Aβ positivity. 

When comparing the ROC curve at per-slice standard, 

PCA-SVM with WB shows the largest AUC (0.992, 95% CI: 

0.985~0.996), followed by PCA-SVM with GMM (0.990, 

95% CI: 0.984~0.995) for Aβ positivity. On the contrary, 

the AUCs at per-subject standard were highest in PCA-SVM 

with WB, PCA-SVM with GMM, and SVM with GMM 

Table 2. Comparison of performance according to features used for discrimination (%) 

 
Features 

Per-slice performance 
 

Per-subject performance 

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

PCA-SVM, WB* 92.38 92.87 92.03  89.21 71.67 98.28 

PCA-SVM, GM* 92.00 91.34 92.44  85.80 61.67 98.28 

SVM, WB 91.03 91.67 90.59  82.39 58.33 94.83 

SVM, GM 92.22 92.13 92.28  82.96 53.33 98.28 
*PCA: principle component analysis, *SVM: support vector machine, *WB: whole brain, *GM: gray matter 
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(1.000, 95% CI: 0.920~1.000), respectively, followed by 

SVM with WB (0.982, 95% CI: 0.887~1.000). Specific 

details of ROC curves in this study are shown in Fig. 1. 

The pairwise comparison results of the ROC curves for 

each experimental model are shown in Table 3. On the 

pairwise comparison at the per-slice standard, the differences 

in the AUCs between the SVM with WB and other three 

models (PCA-SVM with WB, PCA-SVM with GM, and 

SVM with GM) were the most significant, respectively 

(0.0249, P < 0.0001; 0.0236, P < 0.0001; 0.0177, P < 0.0001), 

followed by PCA-SVM with GM ~ SVM with GM (0.0059, 

P = 0.0001) and PCA-SVM with WB ~ SVM with GM 

(0.0072, P = 0.0010). PCA-SVM with WB ~ PCA-SVM 

with GM showed no significant differences (0.0013, P = 

0.3019). However, no significant differences were observed 

at per-subject standard in all cases. 

Hyper-parameters ultimately determined from each inner 

loop of the NCV through the Bayesian optimizer and used to 

estimate per-slice classification performance are summarized 

in Table 4. Regardless of the experimental model, the poly- 

Table 3. Pairwise comparison of ROC curves for each model at each standard 

 Comparisons Per-slice (DBA*, P-value) Per-subject (DBA, P-value) 

PCA-SVM, WB ~ PCA-SVM, GM**  0.0013, P = 0.3019 0.0000, P = 1.0000 

PCA-SVM, WB ~ SVM, WB**  0.0249, P < 0.0001 0.0184, P = 0.2354 

PCA-SVM, WB ~ SVM, GM 0.0072, P = 0.0010 0.0000, P = 1.0000 

PCA-SVM, GM ~ SVM, WB 0.0236, P < 0.0001 0.0184, P = 0.2454 

PCA-SVM, GM ~ SVM, GM 0.0059, P = 0.0001 0.0000, P = 1.0000 

SVM, WB ~ SVM, GM 0.0177, P < 0.0001 0.0184, P = 0.2454 

 *DBA: difference between areas 
** PCA: principle component analysis, ** SVM: support vector machine, ** WB: whole brain, ** GM: gray matter 

Fig. 1. Receiver operating characteristic (ROC) analysis to classify several experiments. (A) and (B) show the comparison of ROC 
curve according to their discrimination power at per-slice and per-subject standard, respectively. In Fig. 1-A, each of area under curve (AUC)
were PCA_SVM_HB (0.992, 95% CI: 0.985~0.996), PCA_SVM_GM (0.990, 95% CI: 0.984~0.995), SVM_HB (0.967, 95% CI: 0.956~
0.976), and SVM_GM (0.985, 95% CI: 0.976~0.991), and in Fig. 1-B, each of them were PCA_SVM_HB (1.000, 95% CI: 0.920~1.000),
PCA_SVM_GM (1.000, 95% CI: 0.920~1.000), SVM_HB (0.982, 95% CI: 0.887~1.000), and SVM_GM (1.000, 95% CI: 0.920~ 
1.000). The pairwise comparison of ROC curves is shown in Table 3. 
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nomial kernel was most commonly adopted, followed by 

linear kernel. In addition, the RBF kernel was not adopted 

even once in all cases (linear:RBF:polynomial = 16:0:48), 

and the validation performance on each inner loop in the 

NCV was estimated. The hyper-parameter of these experi- 

ments as continuous variables such as C, gamma, and num- 

ber features of PCA estimated through the NCV were denied 

normality by Shapiro-Wilk test but their performance distri- 

bution was accepted as normality. 

 

DISCUSSION 
 

Because of the pathological nature of AD, the diagnosis 

of subject's brain must be taken into account in stereotactic 

coordinates. In order to analyze the 3-dimensional infor- 

mation of a object, there is a study in which an approach to 

extract the feature from the 3-dimensional voxel data of a 

sample is applied to the brain (Zhang et al., 2011; Blanc-

Durand et al., 2017). Because these studies do not provide 

information per slices, there is a limit to providing infor- 

mation that is sympathetic to physicians and patients. 

In order to create a model that performs the per-slice 

classification, only visually determined per-slice BAPL 2 in 

the per-subject BAPL 2 group were considered as dataset to 

fit and test a model, and visually determined per-slice BAPL 

1 included in the per-subject BAPL 2 group were not used as 

the dataset. Regarding the methods used during the experi- 

ment to determine the subject's Aβ deposition status, even a 

single misclassification may have had a large impact on the 

specificity. Therefore, specificity was lower than sensitivity 

in Table 2. In order to improve this specificity, other rules 

to test per-subject discrimination should be implemented. 

In a conventional quantitative analysis of amyloid PET 

according to the pathological deposition patterns of the amy- 

loid plaque, studies have considered the gray matter as the 

region of interest (Choi et al., 2016). On the per-slice classi- 

fication shown in Table 3, because the pairwise comparisons 

show significant differences in both cases that used PCA-

SVM, the feature seems to be extracted using the PCA per-

slice. In addition, in cases that did not use PCA, the perfor- 

mance of SVM with GMM was significantly improved. 

Moreover, the model with PCA showed no significant per- 

formance improvement according to WB and GM. Thus, 

PCA and WB can extract features with a similar discrimi- 

nation level. 

The results of hyper-parameter determined in the inner 

loop showed a validation performance that was slightly 

higher than that of the generalization. Therefore, SVM seems 

to be able to show the best performance, while compromising 

the performance properly instead of falling into overfitting. 

The performance estimates shown in the inner loop of the 

NCV for each experimental model followed the normal dis- 

tribution and showed a somewhat constant CI, unlike the dis- 

tribution of the hyper-parameters. In the quantitative analysis 

of 18F-FBB images, the dataset to be fitted seems to be 

more important than the influence of the hyper-parameters 

in the selected model. 

There were several machine learning techniques and amy- 

loid radiotracers for detection of Alzheimer's disease. 18F 

FDG PET imaging was used for computer aided Alzheimer's 

Table 4. Hyper-parameter statistics searched by Bayesian optimization after each inner loop 

 
Item 

PCA-SVM**  
 

SVM 
Total 

WB**  GM**  WB GM 

Kernel* 3:0:13 5:0:11  3:0:13 5:0:11 16:0:48 

C 23.57 (27.79) 25.17 (29.35)  31.53 (38.22) 25.47 (32.92) 26.43 (31.69) 

Gamma 0.0089 (0.0090) 0.0228 (0.0368)  0.0306 (0.0506) 0.0364 (0.0471) 0.0247 (0.0398) 

No. PCA feature 2,334 (1,331) 1,720 (1,552)  - - 2,027 (1,456) 

Accuracy (%) (SD) 
95 % CI 

94.99 (2.36) 
93.84~96.15 

94.25 (2.45) 
93.05~95.45  93.75 (2.07) 

92.73~94.77 
93.46 (3.11) 
91.94~94.98 

94.11 (2.53) 
93.49~94.73 

 *Kernel: selected kernel as categorical variable (linear: radial basis; function: polynomial) 
** PCA: principle component analysis, ** SVM: support vector machine, ** WB: whole brain, ** GM: gray matter 
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diagnosis. By SVM, the 88.24% accuracy in identifying mild 

AD, with 88.64% specificity, and 87.70% sensitivity is ob- 

tained (Illán IA et al., 2011). A computer aided diagnosis 

(CAD) system for the Alzheimer's disease detection was 

performed with a 18F-FDG and Pittsburg Compound B (PiB) 

PET. In the first, FDG results got better reaching an accuracy 

of 94.74%, in the second set both FDG and PIB rates were 

improved reaching a maximum accuracy of 92.86% (Chaves 

et al., 2012). 

 

CONCLUSIONS 
 

We create SVM model to estimate the posterior pro- 

babilities to be Aβ-positive for each slices of a subject. And 

the posterior probabilities for each subject were estimated 

using the calculated per-slice posterior probabilities and we 

evaluated the performance of our model according to brain 

region and use of PCA. The data set used in the experiment 

was 173 subject imaged 18F-FBB PET. The results of this 

experiment showed that the per-slice classification with PCA 

shows better performance to classify Aβ-positive and Aβ-

negative groups. And GM in the axial plane can be a feature 

that helps discriminate between Aβ-positive and Aβ-negative 

group for quantitative analysis using machine learning. 
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