Acknowledgement
We thank the Department of Nuclear medicine and Neurology at Chung-Ang University Hospital for providing the necessary tools to make this research successful.
References
- Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer's disease: clinical practice in 2021. J Prev Alzheimers Dis 2021;8:371-386. https://doi.org/10.14283/jpad.2021.23
- Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis 2009;35:157-164. https://doi.org/10.1016/j.nbd.2008.09.004
- Mantzavinos V, Alexiou A. Biomarkers for Alzheimer's disease diagnosis. Curr Alzheimer Res 2017;14:1149-1154. https://doi.org/10.2174/1567205014666170203125942
- Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019;51:1-10. https://doi.org/10.1038/s12276-019-0250-2
- Cho K, Kim WG, Kang H, Yang GS, Kim HW, Jeong JE, et al. Classification of 18F-florbetaben amyloid brain PET images using PCA-SVM. Biomed Sci Lett 2019;25:99-106. https://doi.org/10.15616/BSL.2019.25.1.99
- Thepa N, Jeong YJ, Kang H, Choi GE, Yoon HJ, Kang DY. A comparative study of [F-18] florbetaben (FBB) PET imaging, pathology, and cognition between normal and Alzheimer transgenic mice. Biomed Sci Lett 2019;25:7-14. https://doi.org/10.15616/BSL.2019.25.1.7
- Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011;10:424-435. https://doi.org/10.1016/S1474-4422(11)70077-1
- Tsubaki Y, Akamatsu G, Shimokawa N, Katsube S, Takashima A, Sasaki M, et al. Development and evaluation of an automated quantification tool for amyloid PET images. EJNMMI Phys 2020;7:59.
- Cho SH, Choe YS, Kim YJ, Lee B, Kim HJ, Jang H, et al. Concordance in detecting amyloid positivity between 18F-florbetaben and 18F-flutemetamol amyloid PET using quantitative and qualitative assessments. Sci Rep 2020;10:19576.
- Kang H, Kim WG, Yang GS, Kim HW, Jeong JE, Yoon HJ, et al. VGG-based BAPL score classification of 18F-florbetaben amyloid brain PET. Biomed Sci Lett 2018;24:418-425. https://doi.org/10.15616/BSL.2018.24.4.418
- Kim JY, Oh D, Sung K, Choi H, Paeng JC, Cheon GJ, et al. Visual interpretation of [18F]Florbetaben PET supported by deep learning-based estimation of amyloid burden. Eur J Nucl Med Mol Imaging 2021;48:1116-1123. https://doi.org/10.1007/s00259-020-05044-x
- Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, et al. Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment. Front Neurosci 2018;12:777.
- Sato R, Lwamoto Y, Cho K, Kang DY, Chen YW. Comparison of CNN models with different plane images and their combinations for classification of Alzheimer's disease using PET images. In: Chen YW, Zimmermann A, Howlett R, Jain L, editors. Smart Innovation, Systems and Technologies book series. Vol 145. Innovation in Medicine and Healthcare Systems, and Multimedia. Singapore: Springer, 2019;169-177.
- Ting KM. Confusion matrix. In: Sammut C, Webb GI, editors. Encyclopedia of Machine Learning. Boston: Springer, 2011;209.
- Simfukwe C, An SS, Youn YC. Comparison of RCF scoring system to clinical decision for the rey complex figure using machine-learning algorithm. Dement Neurocogn Disord 2021;20:70-79. https://doi.org/10.12779/dnd.2021.20.4.70
- Sato R, Iwamoto Y, Cho K, Kang DY, Chen YW. Accurate BAPL score classification of brain PET images based on convolutional neural networks with a joint discriminative loss function. Appl Sci (Basel) 2020;10:965.