• 제목/요약/키워드: 16s rRNA Sequencing

검색결과 520건 처리시간 0.026초

Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil

  • Wen, Zhong-Ling;Yang, Min-Kai;Fazal, Aliya;Liao, Yong-Hui;Cheng, Lin-Run;Hua, Xiao-Mei;Hu, Dong-Qing;Shi, Ji-Sen;Yang, Rong-Wu;Lu, Gui-Hua;Qi, Jin-Liang;Hong, Zhi;Qian, Qiu-Ping;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1169-1179
    • /
    • 2020
  • In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminumsensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. Among the three sampling compartments of the same soybean genotype, WRH had the lowest community richness and diversity while showing the highest coverage. Beta diversity analysis results displayed no significant difference for any compartment between the two genotypes, or among the three different sampling compartments for any same soybean genotype. However, the relative abundance of major bacterial taxa, specifically nitrogen-fixing and/or aluminum-tolerant bacteria, was significantly different in the compartments of the BRH and/or SRH at phylum and genus levels, indicating genotype-dependent variations in rhizosphere bacterial communities. Strikingly, as compared with BRH and SRH, the WRH within the same genotype (BX10 or BD2) always had an enrichment effect on rhizosphere bacteria associated with nitrogen fixation.

Gene Transfer Optimization via E. coli-driven Conjugation in Nocardiopsis Strain Isolated via Genome Screening (유전체 스크리닝으로 선별된 Nocardiopsis 균주의 대장균 접합을 통한 유전자 도입전략 최적화)

  • Jeon, Ho-Geun;Lee, Mi-Jin;Kim, Hyun-Bum;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • 제39권2호
    • /
    • pp.104-110
    • /
    • 2011
  • Actinomycetes, Gram positive soil bacteria, are valuable microorganisms which produce useful secondary metabolites including antibiotics, antiparasitic substances, anti-cancer drugs, and immunosuppressants. Although a major family of actinomycetes, known as streptomycetes, has been intensively investigated at the molecular level for several decades, a potentially valuable and only recently isolated non-streptomycetes rare actinomycetes (NSRA) family has been poorly characterized due to lack of proper genetic manipulation systems. Here we report that a PCR-based genome screening strategy was performed with approximately 180 independently isolated actinomycetes strains to isolate potentially valuable NSRA strains. Thanks to this simple PCR-based genome screening strategy we were able to identify only seven NSRA strains, followed by 16S rRNA sequencing for confirmation. Through further bioassays, one potentially valuable NSRA strain (tentatively named Nocardiopsis species MMBL010) was identified which possessed both antifungal and antibacterial activities, along with the presence of polyketide synthase and non-ribosomal peptide synthase genes. Moreover, Nocardiopsis species MMBL010, which was intrinsically recalcitrant to genetic manipulation, was successfully transformed via E. coli-driven conjugation. These results suggest that PCR-based genome screening, followed by the establishment of an E. coli-driven conjugation system, is an efficient strategy to maximize potentially valuable compounds and their biosynthetic genes from NSRA strains isolated from various environments.

Isolation and Characterization of Kimchi Lactic Acid Bacteria Showing Anti-Helicobacter pylori Activity (Helicobacter pylori 억제능 김치 유산균의 분리와 특성 규명)

  • Lee, Youl;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • 제36권2호
    • /
    • pp.106-114
    • /
    • 2008
  • One bacterium, which showed strong antagonistic activity against H. pylori KCCM 41756, was isolated from kimchi. The strain NO1 was designated as Lactobacillus plantarum NO1 based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. The culture medium $(2{\sim}4{\mu}g/ml)$ of Lb. plantarum NO1 reduced $(40{\sim}60%)$ the urease activity of H. pylori KCCM 41756. Lb. plantarum NO1 inhibited the binding of H. pylori to human gastric cancer cell line, AGS cells, by more than 33%. Lb. plantarum NO1 exhibited high viability (maintained initial viable cell count of $10^9CFU/ml$) in 0.05 M sodium phosphate buffer (pH 3.0) for 2 h, in artificial gastricjuice for 2 h and in 0.3%, 0.5% oxgall for 24 h. Hemolysis phenomena did not observed when Lb. plantarum NO1 was incubated in the blood agar media. We concluded that Lb. plantarum NO1 can be a good candidate as a probiotic, harboring anti-H. pylori activity.

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • 제52권1호
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum HKN01: A New Insight into the Morphological Changes of Antibacterial Compound-Treated Escherichia coli by Electron Microscopy

  • Sharafi, Hakimeh;Maleki, Hadi;Ahmadian, Gholamreza;Zahiri, Hossein Shahbani;Sajedinejad, Neda;Houshmand, Behzad;Vali, Hojatollah;Noghabi, Kambiz Akbari
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.225-236
    • /
    • 2013
  • Among several bacteria examined, an antibacterial-producing Lactobacillus strain with probiotic characteristics was selected and identified based on 16S rRNA gene sequencing. Subsequent purification and mode of action of the antibacterial compounds on target cells including E. coli were investigated. Maximum production of the antibacterial compound was recorded at 18 h incubation at $30^{\circ}C$. Interestingly, antibacterial activity remained unchanged after heating at $121^{\circ}C$ for 45 min, 24 h storage in temperature range of $70^{\circ}C$ to room temperature, and 15 min exposure to UV light, and it was stable in the pH of range 2-10. The active compounds were inactivated by proteolytic enzymes, indicating their proteinaceous nature, and, therefore, referred to as bacteriocin-like inhibitory substances. Isolation and partial purification of the effective agent was done by performing ammonium sulfate precipitation and gel filtration chromatography. The molecular mass of the GFC-purified active compound (~3 kDa) was determined by Tris-Tricine SDS-PAGE. To predict the mechanisms of action, transmission electron microscopy (TEM) analysis of ultrathin sections of E. coli before and after antibacterial treatment was carried out. TEM analysis of antibacterial compounds-treated E. coli demonstrated that the completely altered bacteria appear much darker compared with the less altered bacteria, suggesting a change in the cytoplasmic composition. There were also some membrane-bound convoluted structures visible within the completely altered bacteria, which could be attributed to the response of the E. coli to the treatment with the antibacterial compound. According to the in vivo experiments oral administration of L. plantarum HKN01 resulted in recovery of infected BALB/c mice with Salmonella enterica ser. Typhimurium.

Fermentation of Cucurbita maxima Extracts with Microganisms from Kimchi (김치 유래 유산균을 이용한 단호박 발효음료 제조 기술 개발)

  • Roh, Hyun-Ji;Kim, Gi-Eun
    • KSBB Journal
    • /
    • 제24권2호
    • /
    • pp.149-155
    • /
    • 2009
  • 19 strains, which could be identified as Lactobacillus sp. were isolated. The Cucurbita maxima has been known as a traditional healthy food and variable positive effects on the human body were already reported. In this study we tried to develop a production process for a healthy fermented drink with Cucurbita maxima and strains originated from Kimchi. Many kinds of lacctobacci species existed in the fermented food cannot survive in the acidic conditions in the stomach. So we tried to search and select a strain, which can arrive to the small intestine. A species of a Lactobacillus named as C332 was identifed as Lactobacillus plantarum and selected for the fermentation process. With the treatment with artificial gastric juice and artificial bile the survival rate of the cells could be calculated. The physiological characteristics at the variable conditions have been tested. After fermentation process the sensoric tests on the product with panels were tried. The most of the cells could survive in the acidic conditions and falcultive anaerobe. Especially some antibacterial effects aganinst E.coli were also found. With all kinds of the results from our research the fermented Cucurbita maxima drink can be a successful item in the market.

Optimal Culture Conditions and Food Waste Decomposition Effects of Mixed Strains Separated from Traditional Fermented Food and Soils (전통발효식품과 토양으로부터 분리된 혼합균주의 최적생육조건 및 음식물쓰레기 분해 효과)

  • Kim, Min-Sun;Kim, Hee-Jeong;Jung, Eun-Seon;Park, Ju-Yong;Chae, Jong-Chan;Hwang, Kwontack;Lee, Seung-Je
    • Journal of Chitin and Chitosan
    • /
    • 제23권4호
    • /
    • pp.285-292
    • /
    • 2018
  • In this study, for the purpose of decomposing food waste, the strain was screened from traditional fermented food and soils. The enzyme activity (protease, amylase, cellulase, lipase) experiment was carried out using the paper disc method in 212 strains isolated from 5% NaCl media. Among them, only the strains having enzyme activity of more than 2 (soil) or more than 4 (traditional fermented food) with the halozone of enzyme activity of 15 mm or more were selected first, and microorganism identification through 16S rRNA sequencing was performed. Finally, were identified such as Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus licheniformis, Bacillus aquimaris, Bacillus megaterium, Bacillus koreensis, Bacillus stratoshericus, Bacillus aryabhattai, Bacillus safensis, Marinobacter hydrocarbonoclasticus. 11 species of mixed strains were confirmed that the culture time was 24 hours, the incubation temperature was $30^{\circ}C$ and the optimum pH was 7.0. In order to confirm the degree of decomposition of standard food wastes (100 g) by treating 11 kinds of mixed strains (25%), solid content of more than $2000{\mu}m$ was determined to be 103 g for the sterilized water group and 18 g for the mixed strains group. And the rest was decomposed to a size of less than $2000{\mu}m$.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents

  • Reddy, Kondreddy Eswar;Kim, Minji;Kim, Ki Hyun;Ji, Sang Yun;Baek, Youlchang;Chun, Ju Lan;Jung, Hyun Jung;Choe, Changyong;Lee, Hyun Jeong;Kim, Minseok;Lee, Sung Dae
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.243-255
    • /
    • 2021
  • Objective: Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that frequently contaminate maize and grain cereals, imposing risks to the health of both humans and animals and leading to economic losses. The gut microbiome has been shown to help combat the effects of such toxins, with certain microorganisms reported to contribute significantly to the detoxification process. Methods: We examined the cecum contents of three different dietary groups of pigs (control, as well as diets contaminated with 8 mg DON/kg feed or 0.8 mg ZEN/kg feed). Bacterial 16S rRNA gene amplicons were acquired from the cecum contents and evaluated by next-generation sequencing. Results: A total of 2,539,288 sequences were generated with ~500 nucleotide read lengths. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla, occupying more than 96% of all three groups. Lactobacillus, Bacteroides, Megasphaera, and Campylobacter showed potential as biomarkers for each group. Particularly, Lactobacillus and Bacteroides were more abundant in the DON and ZEN groups than in the control. Additionally, 52,414 operational taxonomic units were detected in the three groups; those of Bacteroides, Lactobacillus, Campylobacter, and Prevotella were most dominant and significantly varied between groups. Hence, contamination of feed by DON and ZEN affected the cecum microbiota, while Lactobacillus and Bacteroides were highly abundant and positively influenced the host physiology. Conclusion: Lactobacillus and Bacteroides play key roles in the process of detoxification and improving the immune response. We, therefore, believe that these results may be useful for determining whether disturbances in the intestinal microflora, such as the toxic effects of DON and ZEN, can be treated by modulating the intestinal bacterial flora.

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785 (반응표면분석법을 이용한 Bacillus amyloliquefaciens SRCM115785의 protease 활성증가를 위한 배지 최적화)

  • Yang, Hee Gun;Ha, Gwangsu;Ryu, Myeong Seon;Park, Se Won;Jeong, Ho Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • 제31권8호
    • /
    • pp.761-770
    • /
    • 2021
  • In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.