Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.761

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785  

Yang, Hee Gun (Microbial Institute for Fermentation Industry (MIFI))
Ha, Gwangsu (Microbial Institute for Fermentation Industry (MIFI))
Ryu, Myeong Seon (Microbial Institute for Fermentation Industry (MIFI))
Park, Se Won (Microbial Institute for Fermentation Industry (MIFI))
Jeong, Ho Jin (Microbial Institute for Fermentation Industry (MIFI))
Yang, Hee-Jong (Microbial Institute for Fermentation Industry (MIFI))
Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 761-770 More about this Journal
Abstract
In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.
Keywords
Bacillus amyloliquefaciens; optimization; protease activity; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y. S., Kim, Y. S. and Shin, D. H. 2006. Isolation, identification, and fermentation characteristic s of Bacillus sp. with high protease activity from traditional Cheonggukjang. Kor. J. Food Sci. Technol. 38, 82-87.
2 Bae, Y. E. and Yoon, K. H. 2012. Production and characterization of thermostable protease from Bacillus licheniformis isolated from Korean traditional soybean paste. Kor. J. Microbiol. 48, 298-304.   DOI
3 Yang, S. J., Lee, D. H., Park, H. M., Jung, H. K., Park, C. S. and Hong, J. H. 2014. Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang. Kor. J. Food Preserv. 21, 286-293.   DOI
4 Yoo, J. H., Joo, J. H., Kim, S. G. and Jang, I. H. 2006. Isolation and characterization of protease producing B. amyloliquefaciens JH-35 from food waste. Kor. J. Environ. Agric. 35, 294-301.   DOI
5 Yoon, K. H. and Shin, H. Y. 2010. Medium optimization for the protease production by Bacillus licheniformis isolated from Cheongkookjang. Kor. J. Microbiol. Biotechnol. 38, 385-390.
6 Yoon, S. H., Ha, S. M., Kwon, S. J., Lim, J. M., Kim, Y. S., Seo, H. S. and Chun, J. S. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617.   DOI
7 Ryu, M. S., Yang, H. J., Jeong, S. J., Seo, J. W., Ha, G. S., Jeong, S. Y. and Jeong, D. Y. 2018. Characteristic study and optimization of culture conditions for Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal. Kor. J. Microbiol. 54, 384-397.   DOI
8 Ha, G. S., Kim, J. W., Im, S. A., Shin, S. J., Yang, H. J. and Jeong, D. Y. 2020. Application of response surface methodology in medium optimization to improve lactic acid production by Lactobacillus paracasei SRCM201474. J. Life Sci. 30, 522-531.   DOI
9 Bong, K. M., Kim, K. M., Seo, M. K., Han, J. H., Park, I. C., Lee, C. W. and Kim, P. I. 2017. Optimization of medium for the carotenoid production by Rhodobacter sphaeroides PS-24 using response surface methodology. Kor. J. Org. Agric. 25, 135-148.   DOI
10 Gupta, R., Beg, Q., K., Khan, S. and Chauhan, B. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60, 381-395.   DOI
11 Ha, G. S., Shin, S. J., Jeong, S. Y., Yang, H. Y., Im, S. A., Heo, J. H., Yang, H. J. and Jeong, D. Y. 2019. Optimization of medium components using response surface methodology for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425. J. Life Sci. 29, 861-870.
12 Jeong, S. J., Yang, H. J., Ryu, M. S., Seo, J. W., Jeong, S. Y. and Jeong, D. Y. 2018. Statistical optimization of culture conditions of probiotic Lactobacillus brevis SBB07 for enhanced cell growth. J. Life Sci. 28, 577-586.   DOI
13 Joshi, S., Yadav, S., Nerurkar, A. and Desai, A. J. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J. Microbiol. Biotechnol. 17, 313-319.
14 Cupp-Enyard, C. 2008. Sigma's non-specific protease activity assay-Casein as a substrate. J. Vis. Exp. 17, 899.
15 Jung, H. K., Jeong, Y. S., Youn, K. S., Kim, D. I. and Hong, J. H. 2009. Quality characteristics of soybean paste (Doenjang) prepared with Bacillus subtilis DH3 expressing high protease levels, and deep-sea water. Kor. J. Food Preserv. 16, 348-354.
16 Kim, D. Y., Lee, E. T. and Kim, S. D. 2003. Purification and characterization of fibrinolytic enzyme produced by Bacillus subtilis K7 isolated from Korean traditional soy sauce. J. Kor. Soc. Agric. Chem. Biotechnol. 46, 176-182.
17 Yang, H. J., Park, C. S., Yang, H. Y., Jeong, S. J., Jeong, S. Y., Jeong, D. Y., Kang, D. O., Moon, J. Y. and Choi, N. S. 2015. Optimization of medium for the production of cellulase by Bacillus subtilis NC1 using response surface methodology. J. Life Sci. 25, 680-685.   DOI
18 Kim, K. E. 2014. Isolation of protease producing microorganisms. J. Kor. Soc. Environ. Eng. 36, 265-270.   DOI
19 Kim, K. P., Kim, N. H., Rhee, C. H., Woo, C. J. and Bae, D. H. 2002. Isolation and characterization of protease producing bacteria from soil. J. Kor. Soc. Food Sci. Nutr. 31, 754-759.   DOI
20 Klingeren, B. V. and Rutgers, A. 1979. Microbiological assays of aminoglycoside antibiotics in serum: Technique and interpretation. Acta Clin. Belg. 34, 278-287.   DOI
21 Lee, N. R., Go, T. H., Lee, S. M., Hong, C. O., Park, K. M., Park, G. T., Hwang, D. Y. and Son, H. J. 2013. Characteristics of Chungkookjang prepared by Bacillus amyloliquefaciens with different soybeans and fermentation temperatures. Kor. J. Microbiol. 49, 71-77.   DOI
22 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
23 Lee, R. H., Yang, S. J., Hwang, T. Y., Chung, S. K. and Hong, J. H. 2015. α-glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens. Kor. J. Food Preserv. 22, 727-734.   DOI
24 Lim, S. I., Kim, H. K. and Yoo, J. Y. 2000. Characteristics of protease produced by Bacillus subtilis PCA 20-3 isolated from Korean traditional Meju. Kor. J. Food Sci. Technol. 32, 154-160.
25 Montville, T. J. 1983. Dual-substrate plate diffusion assay for proteases. Appl. Environ. Microbiol. 45, 200-204.   DOI
26 Nilegaonkar, S., S., Zambare, V., P., Kanekar, P. P., Dhakephalkar, P. K. and Sarnaik, S. S. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioreseour. Technol. 52, 3571-3578.
27 Pathak, A., P., Rathod, M., G., Mahabole, M. P. and Khairnar, R. S. 2020. Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator. Heliyon 6, e04053.   DOI
28 Kim, J. Y. 2007. Isolation and characterization of an alkaline protease produced by Bacillus subtilis JK-1. Kor. J. Microbiol. 43, 331-336.
29 Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, M. and Kamoun, A. S. 2010. Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone. J. Biosci. Bioeng. 110, 288-294.   DOI