• Title/Summary/Keyword: 1-planar graph

Search Result 37, Processing Time 0.022 seconds

5-CYCLABILITY IN INFINITE PLANAR GRAPHS

  • JUNG HWAN-OK
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.537-543
    • /
    • 2005
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper Sallee's result is extended to 3-connected infinite locally finite VAP-free plane graphs containing no unbounded faces.

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

CHARACTERIZATION THEOREMS AND 4-ORDERABILITY ON INFINITE MAXIMAL PLANAR GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.577-587
    • /
    • 2006
  • We present several properties concerning infinite maximal planar graphs. Results related to the infinite VAP-free planar graphs are also included. Finally, we extend the result of W. Goddard, who showed that every finite 4-connected maximal planar graph is 4-ordered, to infinite strong triangulations.

LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH AT LEAST FIVE

  • Hongyu Chen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.263-271
    • /
    • 2024
  • A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on V (G) of size k allows an injective coloring 𝜑 such that 𝜑(v) ∈ L(v) whenever v ∈ V (G). The least k for which G is injectively k-choosable is denoted by χli(G). For a planar graph G, Bu et al. proved that χli(G) ≤ ∆ + 6 if girth g ≥ 5 and maximum degree ∆(G) ≥ 8. In this paper, we improve this result by showing that χli(G) ≤ ∆ + 6 for g ≥ 5 and arbitrary ∆(G).

TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

  • Tan, Xiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.139-151
    • /
    • 2016
  • A k-total-coloring of a graph G is a coloring of $V{\cup}E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree ${\Delta}$. In this paper, it's proved that if ${\Delta}{\geq}7$ and G does not contain adjacent 5-cycles, then the total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ is ${\Delta}+1$.

THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITHOUT ADJACENT SHORT CYCLES

  • Chen, Hong-Yu;Tan, Xiang;Wu, Jian-Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.145-154
    • /
    • 2012
  • Let G be a planar graph with maximum degree $\Delta$. The linear 2-arboricity $la_2$(G) of G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. In this paper, we prove that (1) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+8$ if G has no adjacent 3-cycles; (2) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+10$ if G has no adjacent 4-cycles; (3) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+6$ if any 3-cycle is not adjacent to a 4-cycle of G.

PLANE EMBEDDING PROBLEMS AND A THEOREM FOR INFINITE MAXIMAL PLANAR GRAPHS

  • JUNG HWAN OK
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.643-651
    • /
    • 2005
  • In the first part of this paper we investigate several statements concerning infinite maximal planar graphs which are equivalent in finite case. In the second one, for a given induced $\theta$-path (a finite induced path whose endvertices are adjacent to a vertex of infinite degree) in a 4-connected VAP-free maximal planar graph containing a vertex of infinite degree, a new $\theta$-path is constructed such that the resulting fan is tight.

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

  • Murugan, E.;Joseph, J. Paulraj
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.391-402
    • /
    • 2022
  • For a given graph G = (V, E), a dominating set is a subset V' of the vertex set V so that each vertex in V \ V' is adjacent to a vertex in V'. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by γ(G). For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

ON THE ANNIHILATOR GRAPH OF GROUP RINGS

  • Afkhami, Mojgan;Khashyarmanesh, Kazem;Salehifar, Sepideh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.331-342
    • /
    • 2017
  • Let R be a commutative ring with nonzero identity and G be a nontrivial finite group. Also, let Z(R) be the set of zero-divisors of R and, for $a{\in}Z(R)$, let $ann(a)=\{r{\in}R{\mid}ra=0\}$. The annihilator graph of the group ring RG is defined as the graph AG(RG), whose vertex set consists of the set of nonzero zero-divisors, and two distinct vertices x and y are adjacent if and only if $ann(xy){\neq}ann(x){\cup}ann(y)$. In this paper, we study the annihilator graph associated to a group ring RG.

The Chromatic Number Algorithm in a Planar Graph (평면의 채색수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.19-25
    • /
    • 2014
  • In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.