• Title/Summary/Keyword: 1-aza-12-crown-4

Search Result 8, Processing Time 0.024 seconds

Resin Synthesis of Adsorbent Metal Ions using 1-Aza-12-Crown-4 (1-Aza-12-Crown-4를 이용한 금속 이온 흡착제 수지 합성)

  • Kim Joon-Tae;Roh Gi-Hwan
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.52-57
    • /
    • 2004
  • Content of chlorine in s쇼rene-DVB copolymer was decreased as crosslink increased and it is because as crosslink increased $1\%,\;2\%,\;5\%\;and\;10\%$ DVB content increased and crosslink density increased and cavity was reduced. Functional group of resin almost disappeared as C-C1 peak around $700cm^{-1}$ was substituted with 1-aza-12-C-4 macrocyclic ligand and new peak of C-N around $1020cm^{-1}$ appeared, so it was confirmed that styrene-DVB copolymer and ligand were compounded. As crosslink increased in the analysis of element contents, it resulted in the reduction of nitrogen content and it is because as crosslink increased, it led to the reduction of chlorine content in the process of substitution reaction and it affected macrocyclic ligand substituted. Form of functional synthetic resin showed distortion of its particles as macrocyclic ligand was introduced to styrene-DVB copolymer and hydrogen of ligand caused substitution with chlorine element of styrene molecule.

Adsorption of Uranium (VI) Ion on the 1-Aza-12-Crown-4-Styrene-DVB Synthetic Resin Adsorbent (1-Aza-12-Crown-4-Styrene-DVB 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.304-309
    • /
    • 2008
  • Cryptand series ion exchange resins were synthesized with 1-aza-12-crown-4 macrocyclic ligand attached to styrene (4 series dangerous matter) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 4% and 8% by a substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, electron micrograph, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium (${UO_2}^{2+}$) ion were investigated. The uranium ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (${UO_2}^{2+}$) > nickel ($Ni^{2+}$) > gadolinium ($Gd^{3+}$) ion. The adsorption was in order of 1%, 2%, 4%, and 8% crosslinked resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Adsorption of Uranium (VI) Ion on 1-Aza-12-Crown-4 Synthetic Resin with Styrene Hazardous Material

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • 1-Aza-12-crown-4 macrocyclic ligand was combined with styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer having 1%, 2%, 3%, and 6% crosslinks by a substitution reaction, in order to synthesize resin. These synthetic resins were confirmed by chlorine content, elementary analysis and IR-spectrum. As the results of the effects of pH, equilibrium arrival time, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over and adsorption equilibrium of uranium ion was about 2 hours. In addition, adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > iron ($Fe^{3+}$) > lutetium ($Lu^{3+}$) ions, adsorbability of the uranium ion was in the crosslinks order of 1%, 2%, 3%, and 6% was increased with the lower dielectric constant.

Adsorption of uranium(VI), calcium(II), and samarium(III) ions on synthetic resin adsorbent with styrene hazardous materials (스타이렌 위험물을 포함한 합성수지 흡착제에 의한 U(VI), Ca(II), Sm(III) 이온들의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-100
    • /
    • 2009
  • Azacrown resins were synthesized by mixing 1-aza-12-crown-4 macrocyclic ligand into styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, crosslinkage of resins and dielectric constant of solvent on adsorption of metal ions by resin adsorbent were investigated. Metal ions showed a great adsorption over pH 3 and adsorption equilibrium of metal ions was about two hours. In addition, adsorptive selectivity of metals on the resin in ethanol solvent was increased in the order of ${UO_2}^{2+}$ > $Ca^{2+}$ > $Sm^{3+}$ ion and adsorption of uranium ion was decreased with increase of crosslinkage such as 1%, 2%, 5% and 10% and was inversely proportional to the order of dielectric constant of solvents.

Adsorption of uranium(VI) ion on the nitrogen-donor macrocyclic synthetic resin adsorbent (질소-주게 거대고리 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2008
  • Resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand into styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1%, 2%, 6% and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, elemental analysis, thermogravimetric analysis, electron microscopy, and IR. The effects of pH, time, crosslink of resins and dielectric constant of solvent on adsorption of uranium ion by resin adsorbent were investigated. Uranium ion showed a great adsorption above pH 3 and adsorption equilibrium of metal ions was established in about two hours. In addition, adsorptive selectivity of resin in ethanol solvent was $UO{_2}^{2+}$ > $Zn^{2+}$ > $Lu^{3+}$ ion and adsorption of uranium ion increased with the increase of the degree of crosslinking (1%~12%) and was inversely in proportional to the order of dielectric constant of solvents.

Adsorption and Separation of U (VI), Co (II), and Dy (III) Metal Ions on Crown Synthetic Resin

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Synthetic resins were combined 1-aza-12-crown-4 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 8%, and 16% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on metal ion adsorption for resin adsorbent, the metal ions showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in ethanol solvent was the order of uranium ($UO_2{^{2+}}$) > cobalt ($Co^{2+}$) > dysprosium ($Dy^{3+}$) ion, adsorbability of the metal ion was the crosslink in order of 1%, 2%, 8%, and 16% and it was increased with the lower dielectric constant. In addition, theses metal ions could be separated in the column with 1% crosslink resin by using nitric acid (pH 2.0) as an eluent.

Enrichment of Magnesium Isotopes by Monoazacrown Bonded Merrifield Peptide Resin.

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.570-574
    • /
    • 2001
  • Magnesium isotope separation was investigated by chemical ion exchange with the 1-aza-12-crown-4 bonded Merrifield peptide resin using an elution chromatographic technique. The capacity of the novel azacrown ion exchanger was 1.0 meq/g dry resin. The heavier isotopes of magnesium were enriched in the resin phase, while the lighter isotopes were enriched in the solution phase. The single stage separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assys. The separation factors of $^{24}Mg^{2+}$-$^{25}Mg^{2+}$, $^{24}Mg^{2+}$-$^{26}Mg^{2+}$, and $^{25}Mg^{2+}$-$^{26}Mg^{2+}$ were 1.008, 1.019, and 1.006, respectively.