• 제목/요약/키워드: 1-aminocyclopropane-1-carboxylate

검색결과 38건 처리시간 0.02초

Changes in Polygalacturonase and Ethylene Biosynthesis of Three Varieties of Apple During Fruit Ripening

  • Kim, Se Hee;Han, Sang Eun;Lee, Hye Eun;Cho, Mi-Ae;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.481-487
    • /
    • 2010
  • The ripening behavior of three apple cultivars, 'Tsugaru', 'Hongro' and 'Fuji' was distinctive and the involvement of POLYGALACTURONASE(PG) in the fruit softening process was confirmed to be ethylene dependent. Fruit softening is genetically coordinated by the action of several cell wall enzymes, including PG which depolymerizes cell wall pectin. Also, loss of firmness is associated with increasing of the ripening hormone, ethylene. In this work, climacteric ripening of three apple cultivars, Tsugaru, Hongro and Fuji, producing different ethylene levels and ripening responses, was examined. Correspondingly in Fuji, a linear and basal ethylene level was observed over the entire period of measurements, and Tsugaru and Hongro displayed a typical climacteric rise in ethylene production. Transcript accumulation of genes involved in ethylene biosynthesis (MdACS3 and MdACO1) and MdPG1 was studied in Tsugaru, Hongro and Fuji cultivars. Expression of MdACO1 transcripts was shown in all three ripened apple fruits. However, the MdACS3 and MdPG1 were transcribed differently in these cultivars. Comparing the MdPG1 of 'Tsugaru', 'Hongro' and 'Fuji', structural difference was discovered by genomic Southern analysis. Overall results pointed out that MdACS3 and MdPG1 play an important role in regulation of fruit ripening in apple cultivar.

Two Ethylene Signaling Pathways in Senescing Carnation Petals: Exogenous Ethylene-induced Expression of Genes for 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase is Different from That of the Gene for Cysteine Proteinase

  • Satoh, Shigeru;Kosugi, Yusuke;Iwazaki, Yujiro;Shibuya, Kenichi;Waki, Keisuke
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.83-87
    • /
    • 2000
  • Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is induced by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to expression of the cysteine proteinase (CP) gene. Until recently, it has been believed that these two phenomena, autocatalytic ethylene production and wilting, are regulated in concert in senescing carnation petals, since the two phenomena occurred closely in parallel. Our studies with petals of a transgenic carnation harboring a sense ACC oxidase transgene and petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl) semicarbazide showed that the expression of ACC synthase and ACC oxidase genes and that of CP are regulated differently in carnation psanetals. Interestingly, in the petals of transgenic carnation, the transcript for CP was accumulated but the transcripts for ACC synthase and ACC oxidase were not accumulated in response to exogenous ethylene. Based on these results, we hypothesized that two ethylene signaling pathways, one leading to the expression of ACC synthase and ACC oxidase genes and the other leading to the expression of CP gene, are functioning in senescing carnation petals.

  • PDF

다양한 스트레스에 대한 식물의 내성을 유도하는 식물생육촉진 세균Variovorax sp. PMC12 균주의 유전체 염기서열 (Complete genome sequence of Variovorax sp. PMC12, a plant growth-promoting bacterium conferring multiple stress resistance in plants)

  • 이신애;김현수;김이슬;상미경;송재경;원항연
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.471-473
    • /
    • 2018
  • 본 연구에서 생물 및 비생물학적 스트레스에 내성을 유도하는 식물 생육 촉진 세균인 Variovarx sp. PMC12 균주의 유전체 염기서열을 분석하였다. PMC12 균주의 유전체는 5,873,297 bp와 1,141,940 bp 크기의 원형 염색체 2개로 구성되었다. 총 6,436개 단백질 유전자, rRNA 9개, tRNA 64개, ncRNA 3개와 유사유전자 80개가 확인되었다. 유전체상에서 발견된 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 항산화 활성, 인산 가용화, 프롤린 생합성, 시드로포어 생합성과 관련된 유전자들은 PMC12 균주가 염, 온도, 병원균에 대한 스트레스에 대한 식물의 내성 유도와 관련되어 있을 것으로 판단된다.

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals

  • Han, Yunlei;Wang, Rui;Yang, Zhirong;Zhan, Yuhua;Ma, Yao;Ping, Shuzhen;Zhang, Liwen;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1119-1128
    • /
    • 2015
  • 1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

Pseudomonas sp. G19에 의한 배추의 염 스트레스 경감 및 생장 촉진 (Pseudomonas sp. G19 Alleviates Salt Stress and Promotes Growth of Chinese Cabbage)

  • 이건웅;이귀재;채종찬
    • 미생물학회지
    • /
    • 제50권4호
    • /
    • pp.368-371
    • /
    • 2014
  • 염 스트레스를 비롯한 다양한 비생물학적 스트레스는 식물의 생장저해와 작물 생산량을 감소시키는 요인으로 작용한다. 계화도 간척지 토양에서 식물생장 촉진 세균을 분리하여 Pseudomonas sp. G19로 명명하였다. G19 균주는 36시간 배양 후 $7.5{\mu}g/ml$의 indole acetic acid를 생산하고 불용성인산을 25% 가용화시켰으며, 식물의 에틸렌 감소와 관련된 1-aminocyclopropane-1-carboxylate deaminase를 발현하였다. 또한 150 mM NaCl에 침지된 염 조건의 토양에서 재배된 유묘기 배추를 이용한 실증실험에서 G19 균주는 배추의 생체중량을 증가시킴으로써 염 스트레스의 경감 및 생장 촉진에 관여함을 알 수 있었다.

The active site and substrate binding mode of 1-aminocyclopropane-1- carboxylate oxidase of Fuji apple (Malus domesticus L.) determined by site directed mutagenesis and comparative modeling studies

  • Ahrim Yoo;Seo, Young-Sam;Sung, Soon-Kee;Yang, Dae-Ryook;Kim, Woo-Tae-K;Lee, Weontae
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.70-70
    • /
    • 2003
  • Active sites and substrate bindings of 1-aminoxyclopropane-1-carboxylate oxidase (MD-ACO1) catalyzing the oxidative conversion of ACC to ethylene have been determined based on site-directed mutagenesis and comparative modeling methods. Molecular modeling based on the crystal structure of Isopenicillin N synthase (IPNS) provided MD-ACO1 structure. MD-ACO1 protein folds into a compact jelly roll shape, consisting of 9 ${\alpha}$-helices, 10 ${\beta}$-strands and several long loops. The MD-ACO1/ACC/Fe(II)/Ascorbate complex conformation was determined from automated docking program, AUTODOCK. The MD-ACO1/Fell complex model was consistent with well known binding motif information (HIS177-ASP179-HIS234). The cosubstrate, ascorbate is placed between iron binding pocket and Arg244 of MD-ACO1 enzyme, supporting the critical role of Arg244 for generating reaction product. These findings are strongly supported by previous biochemical data as well as site-directed mutagenesis data. The structure of enzyme/substrate suggests the structural mechanism for the biochemical role as well as substrate specificity of MD-ACO1 enzyme.

  • PDF

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas fluorescens Promoting the Growth of Chinese Cabbage and Its Polyclonal Antibody

  • Soh, Byoung Yul;Lee, Gun Woong;Go, Eun Byeul;Kim, Byeo-Ri;Lee, Kui-Jae;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.690-695
    • /
    • 2014
  • Bacterial 1-aminocyclopropane-1-carboxlyate (ACC) deaminase (AcdS) is an enzyme that cleaves ACC, a precursor of the plant hormone ethylene, into ${\alpha}$-ketobutyrate and ammonia. The acdS gene was cloned from Pseudomonas fluorescens, which was capable of improving the seedling of Chinese cabbage under salinity condition. The recombinant AcdS (rAcdS) exhibited optimal activity at pH 8.5 and $30^{\circ}C$. Strong activity was sustained at up to 100 mM NaCl. The polyclonal anti-P. fluorescens AcdS antibody was produced in a rabbit that had been immunized with the purified rAcdS. This antibody successfully recognized the homologous antigens derived from the total proteins of isolated plant growth-promoting microorganisms. A statistically significant correlation was observed between the intensity of hybridization signal and AcdS activity measured by a biochemical method, suggesting its application as a useful indicator for active deaminases.

Isolation and Characterization of a New Fluorescent Pseudomonas Strain that Produces Both Phenazine 1-Carboxylic Acid and Pyoluteorin

  • HU, HONG-BO;XU, YU-QUAN;FENG CHEN;XUE HONG ZHANG;HUR, BYUNG-KI
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.86-90
    • /
    • 2005
  • Strain M-18 was isolated from the rhizosphere soil of sweet melon, using 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source. Its phenotypic characteristics, metabolic tests, and 16S rDNA sequence were analyzed. The antibiotics secreted by strain M-18 were determined to be phenazine 1-carboxylic acid and pyoluteorin. These data showed that strain M-18 was a new fluorescent Pseudomonas strain that produced both phenazine 1-carboxylic acid and pyoluteorin, some features being similar to Pseudomonas aeruginosa and Pseudomonas fluorescens. Therefore, the strain M-18 appears to be the first pseudomonad described to date that is capable of producing both phenazine 1-carboxylic acid and pyoluteorin.

해안 사구에서 서식하는 토착식물로부터 분리된 근권미생물 Bacillus aerius MH1RS1의 식물성장 촉진 능력 연구 (Plant Growth-promoting Ability by the Newly Isolated Bacterium Bacillus aerius MH1RS1 from Indigenous Plant in Sand Dune)

  • 이은영;홍선화
    • 대한환경공학회지
    • /
    • 제35권10호
    • /
    • pp.687-693
    • /
    • 2013
  • 다양한 난개발과 해안도로, 방파제 등의 인공 구조물 설치로 인한 해안 침식과 해안선 파괴 등으로 해안사구가 크게 훼손되고 있다. 이에 본 연구에서는 해안사구에서 서식하고 있는 토착식물의 근권으로부터 식물 성장 촉진 능력이 있으면서 동시에 염분에 강한 내성을 가지는 근권세균의 library를 구축하였고, 이들 균주를 대상으로 식물 성장 촉진 능력을 평가하였다. 또한, 내염성 식물을 대상으로 사구 토양에서의 성장률에 근권세균이 미치는 영향을 평가한 후, 훼손된 사구의 복원에 가장 유용한 미생물을 선별하고 분리된 근권세균이 식물 성장에 미치는 영향을 평가하였다. 실험은 선정된 균주와 갯기름나물과 줄무늬갈대를 해안사구에 식재한 후 성장에 미치는 영향을 평가하였다. 그 결과, MH1RS1는 (IAA) production, siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) 그리고 염분내성을 가지고 있다. 갯기름나물의 경우는 줄기의 길이와 뿌리의 무게는 크게 향상되었다. 특히, 줄기의 생체와 뿌리 무게는 control과 비교했을 때 25% 성장이 향상되었다. 줄무늬 갈대는 Bacillus aerius MH1RS1 에 의해 초장은 18%와 뿌리의 생체 중은 20%로 크게 향상 되었다.

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF