• Title/Summary/Keyword: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Search Result 45, Processing Time 0.027 seconds

Effect of Selenium Yeast on MPTP (1-methyl-4-phenyl-propion-oxypiperidine)-Induced Neurotoxicity in Mice (Selenium이 MPTP(1-methy-4-phenyl-1,2,3,6-tetrahydropyridine)에 의해 유도된 생쥐의 신경독성에 미치는 영향)

  • Kim Seck-Hwan;Lee Joo-Yeon;Kim Yeo-Jeong;Kang Hye-Ok;Lee Hang-Woo;Choi Jong-Won
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.266-273
    • /
    • 2006
  • This study is investigated the effect of selenium against neurotoxicity induced by MPTP(1-methy-4-phenyl-propion-oxypiperidine) in mice. In order to demonstrate neuroprotective activity of selenium, mice were administrated orally with selenium(25, 50, 100 ${\mu}g/kg$, once/day) for 10 days, and MPTP(10 mg/kg) was injected subcutaneously into the mice for 6 days from the beginning 1hr before selenium treatment. Test of rota road activity was inhibited by treatment with selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. Monoamine oxidase(MAO)-B activity and cerebral lipid peroxide content were significantly decreased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice and MAO-A was not affected. Activities of cerebral superoxide dismutase, catalase and glutathione peroxidase were significantly increased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. These results suggest that selenium might be estimated the result from the cooperative action of its inhibitory effect on monoamine oxidase-B with that of the enhancement of antioxidant(SOD, catalase, GSH-Px) defence ability.

Anti-inflammatory Effect of Bee Venom Acupuncture at Sinsu($BL_{23}$) in a MPTP Mouse Model of Parkinson Disease (MPTP 유발 파킨슨 병 동물 모델에서의 신수혈($BL_{23}$) 봉독약침의 항염증 효과)

  • Kim, Chan-Young;Lee, Jae-Dong;Lee, Sang-Hoon;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.26 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • 목적 : 파킨슨 병은 기저핵 흑질의 치밀부에서 도파민성 신경세포의 퇴행으로 인하여 발생하는 질병으로 신경 염증이 주요 병인으로 밝혀져 있다. 이 연구는 MPTP 유발 파킨슨 병 동물 모델에서 신수혈($BL_{23}$)에 대한 봉독 약침의 항염증 효과 및 그 기전을 확인하기 위해 시행되었다. 방법 : $C57_{BL}$/6쥐를 무처치군, MPTP+saline군, MPTP+BVA(0.06mg/kg)군, MPTP+BVA(0.6mg/kg)군의 4군으로 나눈 뒤 무처치군을 제외한 모든 그룹에 총 8시간 동안 2시간 간격으로 MPTP-HCl(20mg/kg per dose$\times$4)을 복강내로 주입하였다. MPTP+BVA 군에서 봉독약침은 마지막 MPTP 주입 2시간 후부터 48시간 간격으로 신수혈($BL_{23}$)에 양측으로 각 20${\mu}\ell$씩 주입하였고 MPTP+saline군에서는 봉독약침 대신 Saline을 주입하였다. 마지막 MPTP 주입 후 7일째에 쥐의 뇌를 적출한 후 면역조직화학법을 시행하였다. 결과 : MPTP 유발 파킨슨 병 동물 모델에서 신수혈에 대한 봉독약침은 농도 의존적으로 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. HSP70-IR neuron은 모든 군에서 나타나지 않았다. 결론 : 봉독약침이 용량의존적으로 microglial activation을 억제하는 효과를 통해 도파민성 신경세포의 파괴를 억제함으로써 항염 효과를 나타냄을 알 수 있었다. 이 결과는 봉독약침이 microglial activation 억제를 통해 임상적으로 파킨슨 병과 같은 신경 퇴행성 질병에 있어 유용한 치료수단이 될 수 있음을 시사한다.

  • PDF

Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial p-AMPK/Nrf2/HO-1 Signaling Pathways

  • Park, Jin-Sun;Leem, Yea-Hyun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Parkinson's disease is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta. In the present study, we investigated whether ${\beta}-Lapachone$ (${\beta}-LAP$), a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia avellanedae), elicits neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. ${\beta}-LAP$ reduced the tyrosine hydroxylase (TH)-immunoreactive fiber loss induced by MPTP in the dorsolateral striatum, and alleviated motor dysfunction as determined by the rotarod test. In addition, ${\beta}-LAP$ protected against MPTP-induced loss of TH positive neurons, and upregulated B-cell lymphoma 2 protein (Bcl-2) expression in the substantia nigra. Based on previous reports on the neuroprotective role of nuclear factor-E2-related factor-2 (Nrf2) in neurodegenerative diseases, we investigated whether ${\beta}-LAP$ induces upregulation of the Nrf2-hemeoxygenae-1 (HO-1) signaling pathway molecules in MPTP-injected mouse brains. Western blot and immunohistochemical analyses indicated that ${\beta}-LAP$ increased HO-1 expression in glial fibrillary acidic protein-positive astrocytes. Moreover, ${\beta}-LAP$ increased the nuclear translocation and DNA binding activity of Nrf2, and the phosphorylation of upstream adenosine monophosphate-activated protein kinase (AMPK). ${\beta}-LAP$ also increased the localization of p-AMPK and Nrf2 in astrocytes. Collectively, our data suggest that ${\beta}-LAP$ exerts neuroprotective effect in MPTP-injected mice by upregulating the p-AMPK/Nrf2/HO-1 signaling pathways in astrocytes.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.

PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression

  • Kim, Duk-Soo;Sohn, Eun-Jeong;Kim, Dae-Won;Kim, Young-Nam;Eom, Seon-Ae;Yoon, Ga-Hyeon;Cho, Sung-Woo;Lee, Sang-Hyun;Hwang, Hyun-Sook;Cho, Yoon-Shin;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.532-537
    • /
    • 2012
  • P18, a member of the INK4 family of cyclin-dependent kinase inhibitors, is a tumor suppressor protein and plays a key cell survival role in a variety of human cancers. Under pathophysiological conditions, the INK4 group proteins participate in novel biological functions associated with neuronal diseases and oxidative stress. Parkinson's disease (PD) is characterized by loss of dopaminergic neurons, and oxidative stress is important in its pathogenesis. Therefore, we examined the effects of PEP-1-p18 on oxidative stress-induced SH-SY5Y cells and in a PD mouse model. The transduced PEP-1-p18 markedly inhibited 1-methyl-4-phenyl pyridinium-induced SH-SY5Y cell death by inhibiting Bax expression levels and DNA fragmentation. Additionally, PEP-1-p18 prevented dopaminergic neuronal cell death in the substantia nigra of a 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine-induced PD mouse model. These results indicate that PEP-1-p18 may be a useful therapeutic agent against various diseases and is a potential tool for treating PD.

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.

Ameliorative Effects of NXP031 on MPTP-Induced Neurotoxicity (MPTP로 유도된 신경 독성에 대한 NXP031의 개선 효과)

  • Lee, Joo Hee;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effects of NXP031, an inhibitor of oxidation by specifically binding to the complex of DNA aptamer/vitamin C, on dopaminergic neurons loss and the reaction of microglia in an animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subchronic Parkinson's disease (PD). Methods: A subchronic PD mouse model was induced via an intraperitoneal (IP) injection of MPTP 30 mg/kg per day for five days. NXP031 (vitamin C/aptamer at 200 mg/4 mg/kg) and vitamin C at 200 mg/kg were administered via IP injections at one hour after performing MPTP injection. This process was performed for five days. Motor function was then evaluated with pole and rotarod tests, after which an immunohistochemical analysis was performed. Results: NXP031 administration after MPTP injection significantly improved motor functions (via both pole and rotarod tests) compared to the control (MPTP injection only) (p<.001). NXP031 alleviated the loss of dopaminergic neurons in the substantia nigra (SN) and striatum caused by MPTP injection. It was found to have a neuroprotective effect by reducing microglia activity. Conclusion: NXP031 can improve impaired motor function, showing neuroprotective effects on dopaminergic neurons in the SN and striatum of MPTP-induced subchronic Parkinson's disease mouse model. Results of this study suggest that NXP031 has potential in future treatments for PD and interventions for nerve recovery.

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.

Protective Effects of Sosokmyoung-tang Against Parkinson's Model in Human Neuroblastoma SH-SY5Y Cells (사람 신경모세포종 SH-SY5Y 세포주의 파킨슨 모델에 대한 소속명탕(小續命湯)의 보호효과)

  • Woo, Chan;You, Ju-Yeon;Jang, Chul-Yong;Kim, Hyo-Rin;Shin, Yong-Jeen;Moon, A-Ji;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.298-308
    • /
    • 2014
  • Objectives: In this study we made an effort to investigate the protective effect of SSMT on the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced cytotoxicity of SH-SY5Y cells. Methods: The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MMT) assay. The fluorescence intensity was measured by using a dye and then with propidium iodide (PI) DNA flow cytometry analysis of the effects on the cell cycle of the SH-SY5Y cells and were used to measure the fluorescence of intracellular reactive oxygen species generation by MPTP. Results: Pretreatment of SSMT significantly suppressed MPTP-induced cytotoxicity, which was revealed as apoptosis characterized by the reduction of cell viability, the increase of ROS production, and the loss of mitochondrial membrane potential in SH-SY5Y cells. Conclusions: These findings suggest that SSMT exerts neuroprotective effects on human neuroblastoma SH-SY5Y cells by MPTP-induced dopaminergic neurodegeneration.