토양과 sludge 에서 1,2-propanediol을 자화할 수 있는 미생물을 분리하여 이들 중 가장 많은 젖산을 생성 하는 호모 한 균주(Y-1-4)를 선정하였다. 배양액에 생성된 산은 paper chromatography와 IR spectrum에 의해서 젖산으로 확인되었다. 이 효모는 탄소원으로서 ethanol, glycerin, glucose 및 1,2-propanediol 등을 자화할 수 있었는데 1,2-propanediol 으로부터만 젖산을 생성했다. 1,2-propanediol 에서부터 젖산생성의 최적 배지 및 최적 배양조건을 검토해서 1,2-propanediol 2.0%, NH$_4$Cl 0.5%, KH$_2$PO$_4$ 0.1%, MgSO$_4$.7$H_2O$ 0.05%, FeSO$_4$.7$H_2O$ 0.025%, yeast extract 0.04%와 CaCO$_3$ 0.3%를 함유하는 배지를 3$0^{\circ}C$에서 4일간 진탕 배양한 결과 젖산 생성량은 liter당 12.1gram 이었다.
1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.
소 난자의 시험관내 수정시 이성체인 1, 2 propanediol과 1, 3 propanediol과의 동결보호제의 이용에 대한 독성효과를 조사하였다. 프랑스에 있는 도축장의 난소에서 채취한 미성숙 난자 212개를 시험관내 성숙과 heparin(10$\mu$g/ml)첨가에 의한 수정 및 배양을 실시하였다. 소 난자의 시험관내 성숙과 수정시 propanediol의 독성효과를 시험한 결과 1,3 propanediol은 80%의 정상 난할분할율과 5.7%의 낮은 다핵분할구율을 나타내었다. 이것은 1,2 propanediol의 73.9%, 10.3%와 미처리대조구의 73.9%, 7.7%와 비교되었으나 처리간의 유의성은 없었다. Heparin 처리구는 1,2 propanediol의 첨가 유무에 관계없이 미처리구에 대하여 고도의 유의성 차이가 인정되었다. (P<0.05)
Saccharomyces cerevisiae was metabolically engineered to improve 1,2-propanediol production. Deletion of the tpil (triosephosphate isomerase) gene in S. cerevisiae increased the carbon flux to DHAP (dihydroxylacetone phosphate) in glycolysis, resulting in increased glycerol production. Then, the mgs and gldA genes, the products of which convert DHAP to l,2-propanediol, were introduced to the tpil-deficient strain using a multicopy plasmid. As expected, the intracellular level of methylglyoxal was increased by introduction of the mgs gene in S. cerevisiae and that of 1,2-propanediol by introduction of both the mgs and gldA genes. As a result, 1.11 g/l of 1,2-propanediol was achieved in flask culture.
Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.
광학성체인 isopropylidene glycerols로 부터 mercaptogiycerol을 합성하였다. 1,2-Isopropylideneglycerol을 tosyl화 하고 다시 tosyl group을 thiolacetate로 치환하였다. 염기성 가수분해와 산화에 의해 1,1'-dithiobis-2,3-isopropylidene-2,3-propanediol이 생성되었다. 이 화합물을 mercaptogiycerol 합성을 위해 사용함으로써 1-decenyl lithium으로 cis-S-dec-1'-enyl-2,3-isopropylidene-1-mercapto-2,3-propanediol을 생성하였다. 본 생성물은 plasmalogenase용 thioplasmaloger 기질 조제에 사용된다.
순수 글리세롤 대신에 유지산업 부산물로써 고농도의 글리세롤이 포함된 폐액을 이용하여 1,3-PD 생산의 최적 조건을 조사하였다. 1,3-PD의 경우 혐기성 조건에서만 생성되므로 글리세롤을 1,3-PD로 전환하는 여러 미생물 중에서 절대 혐기성 균주보다 다루기 쉽고 배양하기 좋은 통성 혐기성 균주인 Klebsiella pneumcniae와 Citrobacter freundii을 비교하여 폐액의 최종 글리세롤 농도가 25 g/L일 때 1,3-PD의 수율과 균주 생육이 좋은 Klebsiella pneumoniae를 선택하였다. 1,3-PD 생산의 최적조건을 조사한 결과 폐액의 글리세롤농도를 25 g/L으로 조정하였을 때 폐액에 포함된 다른 성분의 저해를 적게 받으면서 생산수율이 가장 높았으며, 질소원으로는 corn steep powder를 1%(w/v) 첨가하였을 때 수율이 가장 높았다. 배양액을 발효조 배양에서 pH는 6.0일 때 1,3-PD 수율이 가장 높았으며 pH가 6.0이하로 낮아졌을 때 균주가 성장하지 못하고 사멸하였다. 발효 최적온도는 $35^{\circ}C$였으며 pH의 급격한 변화를 방지하기 위해 첨가한 인산염의 첨가는 효과가 없었다. 그리고 순수 글리세롤의 비교 실험에서 글리세롤 최종농도가 2.5%일 때 1,3-PD으로 수율을 보면 폐액은 53%, pure 글리세롤은 51%로 거의 비슷하였다. 글리세롤 최종 농도가 5.0%로 조정한 했을 때 1,3-PD 수율은 글리세롤함유 폐액 및 순수글리세롤의 기질농도를 2.5% 사용했을 때 보다 모두 낮아졌다. 산업적으로 비누 세제산업 부산물로 생성되는 글리세롤함유 폐액을 1,3-PD 생산에 사용하기 위해서 폐액의 글리세롤농도를 2.5% 조정했을 때 1,3-PD 수율이 순수 글리세롤을 사용했을 때와 비슷하게 생성됨을 알수 있었다. 앞으로 고농도 폐액에서 생육저해가 없이 1,3-PD을 생산할 수 있는 돌연변이 균주의 개발과 유가배양 및 연속 배양에서 최적 배양조건을 찾아야 할 것이다.
3-Monochloro-1,2-propanediol(3-MCPD) is currently being a matter of concern because of its toxicity. 3-MCPD produced during the acid hydrolysis of soybean products has been reported to be mutagenic, neurotoxic, nephrotoxic and spermatotoxic. Howerer, the carcinogenicity of 3-MCPD is a controversial issue over the past several decades. 3-MCPD characteristically showed a variety of toxicities in reproductive system such as, decrease in sperm number and sperm motility, infertility, loss of sperm function, and weight decrease in ovary. Due to the toxicity of 3-MCPD, exposure to 3-MCPD has been proposed to be reduced to as low a level as technologically feasible. 3-MCPD can be detected in soy sauce or non-soy sauce products. The legal limit for 3-MCPD this year has been suggested to be 20 ppb($\mu\textrm{g}$/kg)in the European Community. In Korea, the permissible level of 3-MCPD is expected to be 0.3 ppm. In this study, 3-MCPD was toxicologically evaluated in terms of risk assessment in humans.
This stduy was carried out in order to investigate the effects of concentration and equilibration time of cryoprotective agents on survival rate of slow and ultrarapidly frozen in vitro fertilized bovine embryos. In vitro fertilized bovine embryos, following dehydration by cryoprotective agents and sucrose, were slowly freezed(from 2$0^{\circ}C$ to -7$^{\circ}C$/-1$^{\circ}C$/min., from -7$^{\circ}C$ -35$^{\circ}C$/-0.2$^{\circ}C$/min. from -35$^{\circ}C$ to -38$^{\circ}C$/-0.3$^{\circ}C$/min.) by cell freezer and directly plunged into liquid nitrogen and thawed in 38$^{\circ}C$ water. Survival rate was defined by development rate to the morula and blastocyst stage after in vitro cultured and FDA test. The results are summarized as follows : 1. The survival rates of in vitro fertilized bovine embryos after slow frozen-thawing in the freezing medium of 0.25M sucrose added 2.5M glycerol, 3.0M DMSO, 2.0M propanediol and 2.5M glycerol+2.0M propanediol were 84.3%, 85.9%, 77.8%, 74.3%, respectively. 2. The survival rates of in vitro fertilized bovine embryos after slow frozen-thawing in the freezing of 0.50M sucrose added 2.5M glycerol, 3.0M DMSO, 2.0M propanediol and 2.5M glycerol+2.0M propanediol were 83.8%, 85.1%, 71.4%, 74.6%, respectively. 3. The survival rates of in vitro fertilized bovine embryos after ultrarapid frozen-thawing in the freezing of 0.25M sucrose added 2.5M glycerol, 3.0M DMSO, 2.0M propanediol and 2.5M glycerol+3.0M propanediol were 69.3%, 70.8%, 63.2%, 67.1%, respectively. 4. The survival rates of in vitro fertilized bovine embryos after ultrarapid frozen-thawing in the freezing of 0.25M sucrose added 2.5M glycerol, 3.0M DMSO, 2.0M propanediol and 2.5M glycerol+2.0M propanediol were 69.4%, 70.1%, 62.3%, 63.5%, respectively. 5. The survival rates of in vitro fertilized bovine embryos after slow and ultrarapid fromthawing in the freezing medium of sucrose added cryoprotective agents were not significant difference between 5min. and 10min. of equilibration time.
This Study was carried out ot investigate the effects of concentration and equilibration time of cryoprotective aagents on survival rate of slowly and ultrarapidly frozen porcine embryos. The porcine embryos following dehydration by cryoprotective agents and 0.25M sucrose were slowly freezed(from 2$0^{\circ}C$ to -7$^{\circ}C$/-1$^{\circ}C$/min., from -7$^{\circ}C$ to -35$^{\circ}C$/-0.2$^{\circ}C$/min., from -35$^{\circ}C$ to -38$^{\circ}C$/-0.3$^{\circ}C$/min.) by Cell Freezer and directly plunged into liquid nitrogen and thawed in 38$^{\circ}C$ water bath. Survival rate was defined as development rate to the morula and blastocyst stage after in vitro culture or by FDA test. The results are summarized as follows : 1. The survival rates of porcine embryos after slow frozen-thawing in the freezing medium of 0.25M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 80.6, 84.7, 75.0 or 78.8%, respectively. 2. The survival rates of porcine embryos after slow frozen-thawing in the freezing medium of 0.50M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 80.9, 82.4, 73.1 or 77.1%, respectively. 3. The survival rates of porcine embryos after ultrarapid frozen-thawing in the freezing medium of 0.25M sucroese added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 65.3, 68.6, 63.2 or 59.9%, respectively. 4. The survival rates of porcine embryos after ultrapid frozen-thawing in the freezing medium of 0.50M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0 propanediol or 2.0M glycerol+2.0M propanediol was 67.5, 62.9, 56.9, or 62.8%, respectively. 5. The higher survival rate of porcine embryos was attained at the short period ofequilibration time(5min.) in the freezing medium added 0.25M sucrose and 3.0 DMSO compared to those of 10 or 20min. equilibration time in the same condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.