Browse > Article
http://dx.doi.org/10.4014/jmb.1103.03009

Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae  

Jung, Joon-Young (Department of Chemical and Biological Engineering, Korea University)
Yun, Hyun-Shik (Department of Biotechnology, Inha University)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.8, 2011 , pp. 846-853 More about this Journal
Abstract
Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.
Keywords
Saccharomyces cerevisiae; glycerol; 1,2-propanediol; metabolic engineering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808.   DOI   ScienceOn
2 Zheng, Z. M., Y. Z. Xu, H. J. Liu, N. N. Guo, Z. Z. Cai, and D. H. Liu. 2008. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. 100: 923-932.   DOI   ScienceOn
3 Pahlman, A. K., K. Granath, R. Ansell, S. Hohmann, and L. Adler. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276: 3555-3563.   DOI
4 Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219.   DOI   ScienceOn
5 Norbeck, J. and A. Blomberg. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554.   DOI
6 Overkamp, K. M., B. M. Bakker, P. Kotter, M. A. Luttik, J. P. Van Dijken, and J. T. Pronk. 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68: 2814-2821.   DOI   ScienceOn
7 Shams Yazdani, S. and R. Gonzalez. 2008. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and coproducts. Metab. Eng. 10: 340-351.   DOI   ScienceOn
8 Sprenger, G. A., B. A. Hammer, E. A. Johnson, and E. C. Lin. 1989. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J. Gen. Microbiol. 135: 1255-1262.
9 Paulsen, I. T., M. K. Sliwinski, B. Nelissen, A. Goffeau, and M. H. Saier Jr. 1998. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116-125   DOI
10 Pavlik, P., M. Simon, T. Schuster, and H. Ruis. 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: Cloning and characterization. Curr. Genet. 24: 21-25.   DOI   ScienceOn
11 Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre, and S. Dequin. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65: 143-149.
12 Neves, L., F. Lages, and C. Lucas. 2004. New insights on glycerol transport in Saccharomyces cerevisiae. FEBS Lett. 565: 160-162.   DOI
13 Nevoigt, E. and U. Stahl. 1996. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12: 1331-1337.   DOI   ScienceOn
14 Nguyen, H. T. and E. Nevoigt. 2009. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metab. Eng. 11: 335-346.   DOI   ScienceOn
15 McKendry, P. 2002. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 83: 37-46.   DOI   ScienceOn
16 McKendry, P. 2002. Energy production from biomass (Part 2): Conversion technologies. Bioresour. Technol. 83: 47-54.   DOI   ScienceOn
17 Michnick, S., J. L. Roustan, F. Remize, P. Barre, and S. Dequin. 1997. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13: 783-793.   DOI   ScienceOn
18 Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
19 Ahrens, K., K. Menzel, A. Zeng, and W. Deckwer. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumonia in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. 59: 544-552.   DOI   ScienceOn
20 Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
21 Atkinson, B. M., F. 1982. Biochemical Engineering and Biotechnology Handbook. [Contains glossary]. Nature Press, New York.
22 Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372.   DOI   ScienceOn
23 Durnin, G., J. Clomburg, Z. Yeates, P. J. Alvarez, K. Zygourakis, P. Campbell, and R. Gonzalez. 2009. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. 103: 148-161.   DOI   ScienceOn
24 Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science 315: 808-810.   DOI   ScienceOn
25 Gonzalez, R., A. Murarka, Y. Dharmadi, and S. S. Yazdani. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab. Eng. 10: 234-245.   DOI   ScienceOn
26 Holst, B., C. Lunde, F. Lages, R. Oliveira, C. Lucas, and M. C. Kielland-Brandt. 2000. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol. Microbiol. 37: 108-124.   DOI   ScienceOn
27 Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168.
28 Lee, W. and N. A. Dasilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65.   DOI   ScienceOn
29 da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.   DOI   ScienceOn
30 Jung, J. Y., E. S. Choi, and M. K. Oh. 2008. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 18: 1797-1802.
31 Lin, E. C. 1976. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30: 535-578.   DOI   ScienceOn
32 Jarvis, G. N., E. R. Moore, and J. H. Thiele. 1997. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J. Appl. Microbiol. 83: 166-174.   DOI   ScienceOn
33 Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzen. 2000. Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483-1495.   DOI   ScienceOn
34 Jeon, E., S. Lee, D. Kim, H. Yoon, M. Oh, C. Park, and J. Lee. 2009. Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme Microb. Technol. 45: 42-47.   DOI   ScienceOn
35 Dharmadi, Y., A. Murarka, and R. Gonzalez. 2006. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. Bioeng. 94: 821-829.   DOI   ScienceOn
36 Barbirato, F., S. Astruc, P. Soucaille, C. Camarasa, J. M. Salmon, and A. Bories. 1997. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations. Microbiology 143: 2423-2432.   DOI   ScienceOn
37 Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. Verlag Chemie, Weinheim.
38 Bouvet, O. M., P. Lenormand, J. P. Carlier, and P. A. Grimont. 1994. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res. Microbiol. 145: 129-139.   DOI   ScienceOn