Browse > Article
http://dx.doi.org/10.4014/jmb.0800.010

Enhanced Production of 1,2-Propanediol by tpil Deletion in Saccharomyces cerevisiae  

Jung, Joon-Young (Department of Chemical and Biological Engineering, Korea University)
Choi, Eun-Sil (Department of Chemical and Biological Engineering, Korea University)
Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.11, 2008 , pp. 1797-1802 More about this Journal
Abstract
Saccharomyces cerevisiae was metabolically engineered to improve 1,2-propanediol production. Deletion of the tpil (triosephosphate isomerase) gene in S. cerevisiae increased the carbon flux to DHAP (dihydroxylacetone phosphate) in glycolysis, resulting in increased glycerol production. Then, the mgs and gldA genes, the products of which convert DHAP to l,2-propanediol, were introduced to the tpil-deficient strain using a multicopy plasmid. As expected, the intracellular level of methylglyoxal was increased by introduction of the mgs gene in S. cerevisiae and that of 1,2-propanediol by introduction of both the mgs and gldA genes. As a result, 1.11 g/l of 1,2-propanediol was achieved in flask culture.
Keywords
Saccharomyces cerevisiae; triosephosphate isomerase; 1,2-propanediol; metabolic engineering;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Altaras, N. E. and D. C. Cameron. 2000. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946   DOI   ScienceOn
2 Amberg, D. C., D. Burke, and J. N. Strathern (eds.). 2005. Isolation and characterization of auxotrophic, temperature-sensitive, and osmotic-sensitive mutants, pp. 11-19. In: Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York. U.S.A
3 Cameron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw. 1998. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125   DOI   ScienceOn
4 Huang, K., F. B. Rudolph, and G.. N. Bennett. 1999. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2- propanediol. Appl. Environ. Microbiol. 65: 3244-3247
5 Lee, T. H., M. D. Kim, and J. H. Seo. 2006. Development of reusable split URA3-marked knockout vectors for Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 979-982   과학기술학회마을
6 Lin, E. C. C. 1996. Dissimilatory pathway for sugars, polyols, and carboxylates, pp. 307-342. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Wshington, DC, U.S.A
7 Kim, J. C., S. W. Kang, J. S. Lim, Y. S. Song, and S. W. Kim. 2006. Stimulation of cephalosporin C production by Acremonium chrysogenum M35 with fatty acids. J. Microbiol. Biotechnol. 16: 1120-1224   과학기술학회마을
8 Gonzalez, B., J. Francois, and M. Renaud. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13: 1347-1355   DOI   ScienceOn
9 Lee, J. H., J. S. Lim, Y. S. Song, S. W. Kang, C. Park, and S. W. Kim. 2007. Optimization of culture medium for lactosucrose ((4)Gbeta- D-galactosylsucrose) production by Sterigmatomyces elviae mutant using statistical analysis. J. Microbiol. Biotechnol. 17: 1996-2004   과학기술학회마을
10 Compagno, C., F. Boschi, and B. M. Ranzi. 1996. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol. Prog. 12: 591-595   DOI   ScienceOn
11 Sutherland, F. C., F. Lages, C. Lucas, K. Luyten, J. Albertyn, S. Hohmann, B. A. Prior, and S. G. Kilian. 1997. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. J. Bacteriol. 179: 7790-7795   DOI
12 Lee, W. and N. A. DaSilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65   DOI   ScienceOn
13 Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
14 Frosberg, C. D. and L. N. Gibbins. 1987. Metabolism of rhamnose and other sugars by strains of Clostridium acetobutylicum and other Clostridium species. Can. J. Microbiol. 33: 21-26   DOI
15 http://www.the-innovation-group.com/ChemProfiles/Propylene%20Glycol.htm
16 Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185
17 Badia, J., J. Ros, and J. Aguilar. 1985. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J. Bacteriol. 161: 435-437
18 Cameron, D. C. and C. L. Cooney. 1986. A novel fermentation: The production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Bio/Technology 4: 651-654   DOI
19 Bennett, G. N. and K. Y. San. 2001. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9   DOI   ScienceOn