• Title/Summary/Keyword: .RuO$_2$ electrode

Search Result 131, Processing Time 0.029 seconds

Properties of sputtering PZT thin film on the Ru/$RuO_2$electrode (Ru/$RuO_2$전극에 성장한 PZT박막의 특성에 관한연구)

  • 강현일;최장현;이종덕;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.717-720
    • /
    • 2001
  • Ferroelectric lead ziroconate titanate (PZT) thin film were fabricated on the different bottom electrodes. Both Ru and Ru/RuO$_2$bottom electrodes were deposited by RF-magnetron sputteirng method. The structure phase and surface morphology of the PZT thin film were largely affected by the bottom electrode. It was observerd that used of Ru/RuO$_2$double electrode reduced leakage current and better ferroelectric properties compare with RuO$_2$bottom electrode. From these results, Ru/RuO$_2$hybride bottom electrode is thought to be the available structure for the bottom electrode.

  • PDF

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

A Study on the RuO2 Electrode Catalyst Prepared by Colloidal Method (콜로이드법으로 합성한 RuO2 전극촉매의 연구)

  • PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • $RuO_2$, $PtO_2$, and various $(Ru,Pt)O_2$ colloidal solution were prepared using modified Watanabe method. Electrodes were manufactured by dipping of Ni mesh into the colloidal solution. Manufactured electrodes were characterized by XRD, SEM, and EDS. $(Ru,Pt)O_2$ electrodes showed $RuO_2$ crystal structure and high roughness. The hydrogen evolution reaction (HER) activities were evaluated by Linear Sweep Voltammetry. 1Ru2Pt electrode showed similar activity with commercial electrode, HER potentials are -0.9 V for both.

Fatigue Characteristics of PZT Thin Films Deposited by ECR-PECVD

  • Chung, Su-Ock;Lee, Won-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2005
  • Fatigue characteristics of lead zirconate titanate (PZT) films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) were investigated. The fatigue characteristics were investigated with respect to PZT film thickness, domain structure, fatigue pulse height, temperature, electrode materials and electrode configurations. The used top and bottom electrode materials were Pt and $RuO_2$. In the fatigue characteristics with fatigue pulse height and PZT film thickness, the fatigue rates are independent of the applied fatigue pulse height at the electric field regions to saturate the P-E hysteresis and polarization $(P^*,\;P^A)$ characteristics. The unipolar and bipolar fatigue characteristics of PZT capacitors with four different electrode configurations $(Pt//Pt,\;Pt//RuO_2,\;RuO_2//Pt,\;and\;RuO_2//RuO_2)$ were also investigated. The polarization-shifts during the unipolar fatigue and the temperature dependence of fatigue rate suggest that the migration of charged defects should not be expected in our CVD-PZT films. It seems that the polarization degradations are attributed to the formation of charged defects only at the Pt/PZT interface during the domain switching. The charged defects pin the domain wall at the vicinity of Pt/PZT interface. When the top and bottom electrode configurations are of asymmetric $(Pt//RuO_2,\;RuO_2//Pt)$, the internal fields can be generated by the difference of charged defect densities between top and bottom interfaces.

Electrodic properties of PZT thin films growed on Ru/$RuO_2$ bottom eletrode (Ru/$RuO_2$ 하부전극에 성장한 PZT 박막의 전기적 특성 연구)

  • Choi, Jang-Hyun;Kang, Hyun-Il;Kim, Eung-Kwon;Park, Young;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.58-62
    • /
    • 2002
  • Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ (PZT) thin films deposited on the Pt/Ti and Ru/$RuO_2$ bottom electrode by rf magnetron sputtering methode. Ru/$RuO_2$ bottom electrode deposited on the p-type wafer as Ru thickness by in-situ process. Our results show that all PZT films indicated perovskite polycrystalline structure with perferred orientation (110) and no pyrochlore phase is observed. A well-fabricated $RuO_2$/PZT/Ru(100nm)/$RUO_2$ capacitor showed a leakage current density in the order of $2.13{\times}10^{-7}A/cm^2$ as 100 kV/cm, a remanent polarization of 7.20 ${\mu}C/cm^2$, and a coercive field of 58.37 kV/cm. The results show that the new Ru/$RuO_2$ bottom electrodes are expected to reduce the degradation ferroelectric fatigue and excellent ferroelectric properties.

  • PDF

The study of the properties of PZT thin films deposited on $Ru/RuO_{2}$ electrode ($Ru/RuO_{2}$ 이중 전극위에 성장한 PZT 박막의 특성에 관한 연구)

  • Choi, Jang-Hyun;Kang, Hyun-Il;Park, Young;Somg, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.394-397
    • /
    • 2001
  • In this paper, in-situ deposited $Ru/RuO_2$ bottom electrodes have been investigated as new bottom electrodes for PZT thin film capacitor application. As a comparison, structural and electrical properties of PZT thin films on Pt/Ti and $RuO_2$ bottom electrodes are also investigated. The use of $Ru/RuO_2$ hybrid electrodes showed better electrical properties in compression with $RuO_2$ bottom electrode. With increasing Ru electrode thickness, the PZT thin films showed preferred orientation along the (110) direction and and leakage current of PZT thin films were improved. The PZT thin films on Ru (100nm)/$RuO_2$ electrodes exhibited excellent ferroelectric properties such as remant polarization and coercive field of $7.2C/cm^2$ and 46.35 kV/cm, respectively.

  • PDF

The study of the properties of PZT thin films deposited on Ru/RuO$_2$ electrode (Ru/RuO$_2$ 이중 전극위에 성장한 PZT 박막의 특성에 관한 연구)

  • Choi, Jang-Hyun;Kang, Hyun-Il;Park, Young;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.394-397
    • /
    • 2001
  • In this paper, in-situ deposited Ru/RuO$_2$ bottom electrodes have been investigated as new bottom electrodes for PZT thin film capacitor application. As a comparison, structural and electrical properties of PZT thin films on Pt/Ti and RuO$_2$ bottom electrodes are also investigated. The use of Ru/RuO$_2$ hybrid electrodes showed better electrical properties in compression with RuO$_2$ bottom electrode. With increasing Ru electrode thickness, the PZT thin films showed preferred orientation along the (110) direction and leakage current of PZT thin films were improved. The PZT thin films on Ru (100nm)/RuO$_2$ electrodes exhibited excellent ferroelectric properties such as remant polarization and coercive field of 7.2 C/$\textrm{cm}^2$ and 46.35 kV/cm, respectively.

  • PDF

Electrical Properties of PZT Thin Films Deposited on the Ru/$RuO_2$ Metal/Oxide Hybrid Electrodes (Ru/$RuO_2$ 금속/산화물 이중전극 위에 증착한 PZT 박막의 전기적 특성)

  • Jeong, Kyu-Won;Park, Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • PZT thin films (3500$\AA$) have been prepard on the Ru/Ru $O_2$ and Ru $O_2$ bottom electrodes with a RF magnetron sputtering system using P $b_{1.05}$(Z $r_{0.52}$, $Ti_{0.48}$) $O_3$ ceramic target. Ru/Ru $O_2$ bottom electrode was fabricated by in-situ processing controlled the $O_2$ partial pressure. The PZT thin films deposited on the Ru/Ru $O_2$ bottom electrode were preferred oriented (101) plane. The PZT thin films deposited on the Ru/Ru $O_2$ bottom electrodes showed better electrical properties than those with Ru $O_2$ bottom electrodes because Ru $O_2$ prevented oxygen vacancies and impurities from existing withing the interface and substrate.e.

  • PDF

Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode (나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작)

  • Kwon, Hyuk-Moon;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II))

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2009
  • Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.