Browse > Article
http://dx.doi.org/10.5322/JES.2009.18.1.061

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II)  

Park, Young-Seek (Department of Health & Environment, Daegu University)
Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu)
Publication Information
Journal of Environmental Science International / v.18, no.1, 2009 , pp. 61-72 More about this Journal
Abstract
Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.
Keywords
Electrochemical oxidation; Dimentionally stable anode; Anode material; Oxidants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yao R. S., Orehotsky J., Visscher W., Srinivasan S., 1981, Ruthcnium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes, J. Electrochem. Soc., 128(9), 1900-1904   DOI   ScienceOn
2 Feng J., Li X. Y., 2003, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, 2399-2407   DOI   ScienceOn
3 Feng Y., Cui Y., Logan B., Liu Z., 2008, Performance of Gd-doped Ti-based Sb-$SnO_2 $ anodes for electrochemical destruction of phenol, Chemosphere, 70, 1629-1636   DOI   ScienceOn
4 Chen X., Chen G., Yue P. L., 2001, Stable $Ti/IrO_x-Sb_2O_5-SnO_2$anode for $O_2$ evolution with low Ir Content, J. Phys. Chem. B., 105(20), 4623-4628   DOI   ScienceOn
5 Correa-Lozano B., Commninellis C., Battisti A. D., 1996, Electrochemical properties of $Ti/SnO_2-Sb_2O_5$ electrodes prepared by the spray pyrolysis technique, J. of Appl. Electrochem., 26, 683-688   DOI   ScienceOn
6 Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2001, Electro-activity and life time properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(II), Korean J. Chem. Eng., 39(2), 138-143
7 Panizza M., Barbucci A., Ricotti R., Cerisola G., 2007, Electrochemical degradation of methylene blue, Sep. and Purifi. Tech., 54, 2007, 382-387   DOI   ScienceOn
8 Nanni I., Polizzi S., Benedetti A., Battisti A. D., 1999, Morphology, microstructure, and electrocatalytic properties of $RuO_2-SnO_2$ thin films, J. Electrochem. Soc., 146, 220-225   DOI
9 Silva L. A., Alves V. A., Silva M. A. P., Trasatti S., Boodts J. F. C., 1997, Morphological, chemical and electrochemical properties of $Ti/(TiO_2+lrO_2) $electrodes, Can. J. Chem., 75, 1483-1493   DOI   ScienceOn
10 Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2000, Fabrication and material properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(I), Korean J. Chem. Eng., 38(6), 774-782
11 Coast C. R., Botta C. M. R., Espindola E. L. G., Oliva P., 2008, Electrochemical treatrnent of tannery wastewater using $DSA^{\circledR}$ electrodes, J. of Hazard. Mater., 153, 616-627   DOI   ScienceOn
12 Malpass G. R. P., Miwa D. W., Machado S. A. S., Olivi P., Motheo A. J., 2006, Oxidation of the atrazine at $DSA^{\circledR}$; electrodes, J. of Hazard. Mater. B, 137, 565-572   DOI   ScienceOn
13 Bertazzoli L., Pelegrini R., 2002, Photoelectrochemical discoloration and degradation of organic pollutants in aqueous solutions, Quim. Nova, 25, 477-482   DOI
14 Rajkumar D., Kim J. G., 2006, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, J. Hazard. Mater., 136, 203-212   DOI   ScienceOn
15 Alves P. D. P., Spagnol M., Tremilinosi G., Andrade A. R. de, 2004, Investigation of the influence of the anode composition of DSA-type electrodes on the electrocatalytic oxidation of phenol in neutral medium, J. Braz. Chem. Soc., 15, 626-634   DOI
16 Profeti D., Lassa1i T. A. F., Olivi P., 2006, Preparation of $Ir_{0.3}Sn_{(0.7-x)}Ti_{x}O_2 $electrodes by the polymeric precursor method: characterization and lifetime study, J. Appl. Electrochem., 36, 883-888   DOI   ScienceOn
17 Lee K. W., Kim H. K., 2008, A study on the interrelation among organic pollutant indices of non-biodegradable paper wastewater, J. of Korean Soc. of Wat. Sci. and Tech., 16(1), 15-23
18 Yang C. H., Lee C. C., Wen T. C., 2000, Hypochlorite genεration on Ru-Pt binary oxide for treatrnent of dye wastewater, J. Appl. Electrochem., 30, 1043-1051   DOI   ScienceOn
19 Vincent F., Morallon E., Quijada C., Vazquez J. L., Aldaz A., Cases F., 1998, Characterization and stability of doped $SnO_2 $ anodes, J. Appl. Electrochem., 607-612   DOI   ScienceOn
20 박영식, 2008, 산화제 생성율이 높은 4성분계 촉매성 산화물 전극(DSA)을 이용한 염료의 간접 산화처리, 한국학술진흥재단 2007년도 지역대학우수 과학자, 최종보고서
21 Chen G., 2004, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41   DOI   ScienceOn