• Title/Summary/Keyword: -cyclodextrin

Search Result 573, Processing Time 0.031 seconds

Physiological Activity of Astaxanthin and its Inclusion Complex with Cyclodextrin (Astaxanthin과 Astaxanthin-Cyclodextrin 포접화합물의 생리활성)

  • Kim, So-Young;Cho, Eun-Ah;Yoo, Gui-Jae;Yoo, Ji-Min;Son, Seok-Min;In, Man-Jin;Kim, Dong-Chung;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • In vitro biological activities such as antioxidant, whitening, anti-hangover and anticancer activities were evaluated. The antioxidant activities of astaxanthin and H. pluvialis extract were significantly higher than that of $\alpha$-tocopherol when the antioxidant activities were determined as xanthine oxidase inhibition, hydroxyl radical scavenging and DPPH radical scavenging. The whitening effect of H. pluvialis extract was about two times as kojic acid. H. pluvialis extract indicated an anticancer activity on a cervical cancer cell line. Astaxanthin showed anti-hangover effect of 1.5 times as jiguja extract. The anti-hangover effect of the inclusion complex (As-$\beta$-CD) was about 1.2 times of jiguja extract. And, the inclusion complex of Haematococcus pluvialis (H.p.-$\beta$-CD) showed almost the same whitening effect as kojic acid.

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid (초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조)

  • Jang, Min Ki;Kim, Yong Hun;Kim, Dong Woo;Lee, Si Yun;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

Preparation of Water-Soluble Solid Forms Containing Ursolic Acid Using Supercritical Fluid (초임계유체를 이용한 우르솔산 함유 고체 가용화 제제의 제조)

  • Lee, Sang-Yun;Jung, Ju-Hee;Jung, In-Il;Choi, Moon-Jae;Park, Eui-Hoon;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.328-335
    • /
    • 2007
  • In this work ursolic acid (UA), a poorly water-soluble compound, was inclusion complexed with 2-hydroxypropyl-$\beta$-cyclodextrin (HP-$\beta$-CD) by various methods such as kneading, solvent evaporation and two types of supercritical fluid processes. The solubility and characteristics of these UA/HP-$\beta$-CD complexes were investigated by scanning electron microscopy, x-ray diffraction and HPLC. The water solubilities of the two complexes obtained from solvent evaporation and ASES processes were observed to increase up to 6$\sim$240 folds and 12$\sim$56 folds, respectively, compared with that of unprocessed UA. The stability of UA/HP-$\beta$-CD complex samples in cosmetic formulations was examined at various temperatures for one month. The UA/HP-$\beta$-CD complex prepared by solvent evaporation was found to be most stable among all the cosmetic formulations tested in our experiments.

Surface Display of Bacillus CGTase on the Cell of Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Bacillus CGTase의 표층발현)

  • Kim Hyun-Chul;Lim Chae-Kwon;Kim Byung-Woo;Jeon Sung-Jong;Nam Soo-Wan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.118-123
    • /
    • 2005
  • For the expression in Saccharomyces cerevisiae, Bacillus stearothermophilus cyclodextrin glucano­transferase gene (cgtS) in pCGTS (4.8 kb) was subcloned into the surface expression vector, pYD1 (GALl promoter). The constructed plasmid, pYDCGT (7.2 kb) was introduced into S. cerevisiae EBY100 cells, and then yeast transformants were selected on the synthetic defined media lacking tryptophan. The formation of cyclodextrin (CD) was confirmed with active staining of culture broth of transformant grown on starch medium. Enzymatic reaction products with respect to the culture time and the reaction time were examined by TLC analysis. The results indicated that the enzyme activity was exhibited after 12 h cultivation and CD was produced after 10min of enzymatic reaction. When the surface-engineered yeast cells were cultured on galactose medium, maximum activities of CGTase were about 21.3 unit/l and 16.5 unit/l at $25^{\circ}C\;and\;30^{\circ}C$, respectively. The plasmids stability showed about $80\%\;even\;at\;25^{\circ}C\;and\;30^{\circ}C$.

Enhancement of Soluble Expression of CGTase in E. coli By Chaperone Molecules and Low Temperature Cultivation. (대장균에서 chaperons 분자와 저온배양에 의한 CGTase의 가용성 발현 증대)

  • 박소림;김성구;권미정;남수완
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.121-125
    • /
    • 2004
  • The synergistic effect of lowered incubation temperature and CroEL/ES expression on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) was studied in recombinant E. coli. pTCGTl and pGroll carrying the cgt and groEL/ES genes under the control of T7 promoter and pzt-I promoter, respectively, were co-introduced. Tetracycline (10 ng/ml) and IPTG (1 mM) were added at the early-exponential phase (2 hr) and mid-exponential phase (3 hr). Low temperature cultivation at $25^{\circ}C$ with groEL/ES expression improved the activity of CGTase by two fold, compared to $37^{\circ}C$ cultivation without chaperones. SDS-PACE analysis revealed that about 69% of CGTase in the total CGTase protein was found in the soluble fraction by overexpression of GroEL/ES and cultivation at$25^{\circ}C$, whereas 20% of CGTase was detected in the soluble fraction when E. coli was cultivated at $37^{\circ}C$ without chaperone. The amount of soluble CGTase from $25^{\circ}C$ culture with chaperone was 3.5-fold higher than that of $37^{\circ}C$ culture without chaperone. Therefore the expression of CroEL/ES and low temperature cultivation greatly enhanced the soluble production of CGTase in E. coli.

Inhibition of Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosal Extracts by Inhibitors (효소 억제제에 의한 토끼의 점막 추출액중 로이신엔케팔린 및 [D-알라$^2$-로이신엔케팔린아미드의 분해 억제)

  • Chun, In-Koo;Park, In-Sook;Hyun, Jeen
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.175-185
    • /
    • 1996
  • To inhibit the enzymatic degradation of leucine enkephalin (Leu-Enk) and its synthetic analog. $[D-ala^2]$-leucine enkephalinamide (YAGFL), in the nasal, rectal and vaginal mucosal and serosal extracts of rabbits, effects of enzyme inhibitors such as amastatin (AM), puromycin (PM), thiorphan (TP), thimerosal (TM), EDTA, N-carboxymethyl-Phe-Leu (CPL), phenylethyl alcohol (PEA), phenylmercuric acetate (PMA), benzalkonium chloride (BC) and modified cyclodextrins, alone or in combination, were observed by assaying the pentapeptides staying intact during incubation. Mucosa extracts were prepared by exposing freshly-excised mucosal specimens mounted on Valia-Chien cells to isotonic phosphate buffer while stirring. The degradation of Leu-Enk and YAGFL followed the apparent first-order kinetics. The half-lives (mean) in the nasal, rectal and vaginal mucosal extracts were found to be 1.07, 0.33 and 1.14 hr for Leu-Enk, and 16.9, 6.2 and 6.8 hr for YAGFL, respectively. AM or PM, which is an aminopeptidase inhibitor, did not show a sufficient inhibition of Leu-Enk $(50\;{\mu}g/ml)$ degradation in all kinds of extracts. $Dimethyl-{\beta}-cyclodextrin\;(DM-{\beta}-CyD)$ decreased the degradation rate constants of Leu-Enk about 2 or 3 times, comparing with no additive. However, the use of mixed inhibitors of AM $(50\;{\mu}M)$/TM (0.25 mM)/EDTA (5 mM) resulted in a full stabilization of Leu-Enk by decreasing the degradation rate constants 67.3, 161.3 and 113.8 times far the nasal, rectal and vaginal mucosal extracts, respectively, comparing with no inhibitor. With mixed inhibitors, Leu-Enk remained intact more than 90% after 6 hr-incubation. In the stabilization of YAGFL, hM, TP or CPL alone showed little efffct, and some additives demonstrated a considerable inhibition of YAGFL degradation in the rank order of TM > BC > EDTA. However, the addition of mixed inhibitors such as TM (0.5 mM) and EDTA (5 mM) into the extracts protected YAGFL from the degradation by more than 85% even after 24 hr-incubation, suggesting almost complete inhibition of YAGFL degradation in the extract. On the other hand, $DM-{\beta}-CyD\;or\;hydroxypropyl-{\beta}-cyclodextrin$ (10%) were also found to retard enzymatic degradation rates of YAGFL markedly, and resulted in staying intact more than 80% of YAGFL in the nasal and vaginal mucosal extracts, and more than 60% in the rectal mucosal extract after 16 hr-incubation.

  • PDF

Degradation and Stabilization of $[D-Ala^2]-Methionine$ Enkephalinamide in Various Rabbit Mucosa Extracts (토끼의 수종 점막 추출액중 $[D-Ala^2]-Methionine$ Enkephalinamide의 분해 및 안정화)

  • Chun, In-Koo;Yang, Yoon-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.173-183
    • /
    • 1992
  • To study the feasibility of transmucosal delivery of $[D-ala^2]-methionine$ enkephalinamide (YAGFM), its enzymatic degradation and stabilization in various rabbit mucosal extracts were investigated by HPLC method. The degradation of YAGFM was observed to follow the first-order kinetics and the half-lives of YAGFM in the nasal, rectal and vaginal mucosal extracts were found to be 25.7, 3.0 and 7.8 hr, respectively. However, there was no significant difference in degradation rates of YAGFM between the mucosal and serosal extracts obtained from the same mucosal membrane. This finding suggests that even a synthetic enkephalin analog, which is designed to be resistent to aminopeptidases, needs to be fully protected from the enzymatic degradation in mucosal sites for the delivery of the analog through mucosal routes. To inhibit the degradation of YAGFM in various mucosal extracts, effects of enzyme inhibitors such as bestatin (BS), amastatin (AM), thiorphan (TP), thimerosal (TM) and EDTA, alone or in combination, and modified cyclodextrins were observed by assaying YAGFM staying intact during 24 hr-incubation at $37^{\circ}C$. It was found from the results that mixed inhibitors such as TM (0.5 mM)/EDTA (5 mM) or AM $(50{\mu}M)/TM$ (0.5 mM)/EDTA (5 mM) provided very useful means for the stabilization in various mucosal extracts. The latter was found to protect YAGFM from the degradation in the nasal, rectal, and vaginal mucosal extracts by 90.9, 90.4 and 91.3%, respectively, after 24 hr-incubation, suggesting almost complete inhibition of YAGFM-degrading enzymes present in the incubation mixture. However, BS $(50{\mu}M)$, AM 50 $(50{\mu}M)$ or TP$(50{\mu}M)$ alone did not reveal sufficient inhibition except TM (0.5 mM) or EDTA (5 mM). The adddition of $2-hydroxylpropyl-{\beta}-cyclodextrin$(10%) to the nasal mucosal extract, and $dimethyl-{\beta}-cyclodextrin$(10%) to the rectal and vaginal mucosal extracts reduced the first-order rate constants for the degradation of YAGFM by 5.8, 17.3 and 8.9 times, respectively, compared to those with no additive.

  • PDF

Solubilization and Fomulation as Soft Gelatine Capsule of Biphenyldimethyldicarboxylate (비페닐디메칠디카르복실레이트의 가용화 및 연질캅셀제로의 설계)

  • Park, Gee-Bae;Chung, Chae-Kyong;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Biphenyldimethyldicarboxylate (PMC), which has been used to treat hepatitis, is insoluble in water, therefore it has low bioavailability after oral administration. For the purpose of increasing the dissolution rate of PMC, the physical mixtures and inclusion complexes of PMC and $dimethyl-{\beta}-cyclodextrin\;(DM\;{\beta}CD)\;or\;hydroxypropyl-{\beta}-cyclodextrin\;(HP{\beta}CD)$ in molar ratio of 1 : 1 and 1 : 2 were prepared by solvent evaporation method. Mixed micelles of PMC were prepared by reacting PMC with bile salts [sodium cholate(NaC), sodium glycocholate (NaGC)] and oleic acid (OA) or palmitoylcarnitine chloride(PCC). Chloroform/water partition coefficient (PC) of PMC was 36.14 in artificial gastric juice (AGJ) and 33.47 in artificial intestinal juice (AIJ), respectively, on the other hand octanol/water PC was 63.36. PMC formulation was prepared by reacting PMC with PEG400-glycerin system(95 : 5, 90 : 10, respectively) and PEG400-PEG4000-glycerin system (70 : 25 : 5, 65 : 25 : 10, respectively). Dissolution test was performed in AGJ and AIJ by paddle method at $37{\pm}0.5^{\circ}C$. The dissolution rates of PMC tablets on the market were 5.74% and 8.26% at AGJ and AIJ, respectively and marketed PMC capsules were 22.14% and 28.64% at AGJ and AIJ, respectively. The dissolution rates of inclusion complexes of PMC with $DM{\beta}CD$ and $HP{\beta}CD$ in a molar ratio of 1 : 1 were more fast than those of corresponding physical mixtures. The decreasing order of dissolution rates was as follows; PMC-PEG400-PEG4000-glycerin formulation > PMC-PEG400-glycerin formulation > mixed micelles > CD inclusion complexes. The dissolution rates of PMC-PEG400-glycerin and PMC-PEG400-PEG4000-glycerin formulation were most fast and the percentage of dissolution was almost 100% within 20 minutes. And their dissolution rates after 120 minutes were markedly increased as compared with capsules on the market (4.0-fold and 3.2-fold in PMC-PEG400-glycerin formulation at AGJ and AIJ, respectively, and 4.8-fold and 3.7-fold in PMC-PEG400-PEG4000-glycerin formulation at AGJ and AIJ, respectively).

  • PDF

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Stability of Vitamin-C Inclusion Comolexes Prepared using a Solvent Evaporation Method (용매증발법으로 제조된 Vitamin-C 포접복합체의 안정성)

  • Yang, Jun-Mo;Lee, Yun-Kyung;Kim, Eun-Mi;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.151-156
    • /
    • 2006
  • Vitamin-C is one of the typical bioactive substances widely used in the cosmetic and pharmaceutical applications. It is well known that the bioavailability of vitamin-C decreases with time because it is spontaneously oxidized in the presence of oxygen. In this study, vitamin-C inclusion complexes were prepared by formulating vitamin-C with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) to protect vitamin-C from being oxidized. Vitamin-C inclusion complexes were prepared by a solvent evaporation method using a rotary evaporator and various solvents of different dielectric constant such as ethanol, methanol and distilled deionized water to investigate the effect of solvent polarity on the stability of vitamin-C. To estimate the stability of inclusion complexes, samples were stored in a 50 mM phosphate buffer solution of pH 7.0 for 24 hours at $25{\pm}0.1^{\circ}C$ and the degradation rate of vitamin-C was calculated using a high performance liquid chromatography. The stability of vitamin-C was observed to improve with the increase of solvent polarity.