Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process

초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가

  • Yang, Jun-Mo (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Kim, Seok-Yun (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Han, Ji-Hyun (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Jung, In-Il (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Ryu, Jong-Hoon (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical and Biochemical Engineering, The University of Suwon)
  • 양준모 (수원대학교 공과대학 화공생명공학과) ;
  • 김석윤 (수원대학교 공과대학 화공생명공학과) ;
  • 한지현 (수원대학교 공과대학 화공생명공학과) ;
  • 정인일 (수원대학교 공과대학 화공생명공학과) ;
  • 유종훈 (수원대학교 공과대학 화공생명공학과) ;
  • 임교빈 (수원대학교 공과대학 화공생명공학과)
  • Published : 2006.04.28

Abstract

A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

본 연구에서는 초임계 ASES 공정을 이용하여 인체내 및 피부에 여러 가지로 유익한 대표적 생리활성물질인 Vitamin-C의 불안정성을 극복하기 위하여 HP-${\beta}$-CD와의 포접복합체를 제조하여 수용액상에서의 안정성을 분석하였다. X-선 회절을 이용한 Vitamin-C와 HP-${\beta}$-CD의 결정성 분석으로 초임계 ASES 공정을 통하여 포접복합체가 용이하게 형성될 수 있음을 확인하였다. HP-${\beta}$-CD가 Vitamin-C의 안정성을 향상시키는 방법으로 이용될 수 있음을 확인하였으며, $25{\pm}0.1^{\circ}C$의 온도를 유지한 pH 7.0의 50 mM 인산완충용액 상에서 순수한 Vitamin-C, 물리적인 혼합물 및 용매증발법과 초임계 ASES 공정을 이용하여 제조된 포접복합체의 Vitamin-C 겉보기 1차 분해 속도 상수는 각각 $1.45{\times}10^{-2}h^{-1},\;1.41{\times}10^{-2}h^{-1},\;1.34{\times}10^{-2}h^{-1},\;0.20{\times}10^{-2}h^{-1}$로 초임계 ASES 공정으로 제조된 포접복합체의 경우 Vitamin-C의 안정성이 매우 크게 향상되는 것을 확인하였다.

Keywords

References

  1. Hodges, R. E., E. M. Baker, J. Hood, H. E. Sauberlich, and S. C. March (1969), Experimental scurvy in man, Am. J. Clin. Nutr. 22, 533-548
  2. Hodges, R. E., J. Hood, J. E. Canham, H. E. Sauberlich, and E. M. Baker (1971), Clinical manifestations of ascorbic acid deficientcy in man, Am. J. Clin. Nutr. 24, 432-443 https://doi.org/10.1093/ajcn/24.4.432
  3. Dollery, Colin T. (1998), Therapeutic Drugs, 2nd ed., Churchill, Livingstone
  4. Djerassi, D. (1997), The role of the corrective vitamins A, B5 and C in the new, high performance cosmetics, Drug Cosmet Ind. 160, 60-62
  5. Fox, C. (1997), Advances in the cosmetic science and technology of topical bioactive materials, Cosmet. Toil. 112, 67-84
  6. Roing, M. G., Z. S. Rivera, and J. F. Kennedy (1995), A model study on rate of degradation of L-ascorbic acid during processing home-produced juice concentrates, Int. J. Food Sci. Nutr. 46, 107 https://doi.org/10.3109/09637489509012538
  7. Liao, M. L. and P. A. Seib (1988), Chemistry of L-ascorbic acid related to foods, Food Chemistry 30, 313-317 https://doi.org/10.1016/0308-8146(88)90116-1
  8. Manzanares, M. I., V. Solls, and Rita H. de Rossi (1996), Effect of cyclodextrins on the electrochemical behaviour of ascorbic acid on gold electrodes, J. Electroanal. Chem. 407, 141-147 https://doi.org/10.1016/0022-0728(95)04468-X
  9. Loftsson, T. and M. E. Brewster (1996), Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization, J. Pharm. Sci. 85, 1017-1025 https://doi.org/10.1021/js950534b
  10. Szejtli J. (1989), Downstream processing using cyclodextrins, TIBTRCH 7, 171-4
  11. Mark A. Mchugh and Val J. Krukonis, (1994), Supercritical fluid extraction; principles and practice, 2nd ed., USA
  12. Subramaniam B. et al. (1997) Pharmaceutical processing with supercritical carbon dioxide, J. Pharm. Sci. 86(8) , 885-890 https://doi.org/10.1021/js9700661
  13. Jung, J. and M. Perrut (2001) Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids 20, 179-219 https://doi.org/10.1016/S0896-8446(01)00064-X
  14. Lee, S. Y., J. K. Kim, W. S. Kim, J. H. Ryu, and G. B. Lim (2004), Preparation of microparticulate itraconazole/hydroxypropyl-$\beta$ -cyclodextrin inclusion complexes using a supercritical anti-solvent process, Korean J. Biotechnol. Bioeng. 19(4), 321-326
  15. Lee, S. Y., J. K. Kim, W. S. Kim, J. H. Ryu, and G. B. Lim (2005), Study of a supercritical fluid process for the preparation of hydroxypropyl-$\beta$-cyclodextrin inclusion complexes, Korean Chem. Eng. Res. 43(1), 110-117