• Title/Summary/Keyword: 힘곡선

Search Result 92, Processing Time 0.026 seconds

Changes in Some Physical Properties of Kimchi during Salting and Fermentation (김치의 절임 및 숙성과정중 물리적 성질의 변화)

  • Kim, Woo-Jung;Ku, Kyung-Hyung;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.483-487
    • /
    • 1988
  • The viscosity of salt solution and Kimchi juice and salt penetration and hardness of Chinese cabbage were investigated during brining and fermentation at $4-35^{\circ}C$. The rate of salt penetration during brining increased as the temperature and salt concentration increased from 5% to 15% while the effect of temperature on the salt penetration rates(%/hr) was rather reduced as salt concentration increased. The hardness of the cabbage measured by puncture test showed a rapid initial decrease during salting and the viscosity of brine changed little. Fermentation of Kimchi resulted a little increase in viscosity of Kimchi juice while the hardness of the cabbage decreased rapidly as pH reduced to pH 4.2-4.3 and then increased a little thereafter.

  • PDF

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

A Study on Compressive Creep Behavior of ACM Rubber using TMA Thermal Analysis (TMA 열분석을 이용한 ACM 고무의 압축크립거동 연구)

  • Ahn, WonSool;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.156-160
    • /
    • 2013
  • A study on compressive creep behavior of ACM rubber for automotive engine gasket was performed using TMA thermal analysis. From the results of isothermal measurements with constant load of 1 N at several different temperatures of 160, 180, 200, and $220^{\circ}C$, compressive creep data at the given temperatures were obtained, and therefrom, shift factor ($a_T$) and master curve at reference temperature of $160^{\circ}C$ were obtained using time-temperature superposition principle (TTSP). $C_1$ and $C_2$ of WLF (Williams-Landel-Ferry) equation were calculated through the WLF plot as -1.107 and 11.571, respectively. From this, life time of ACM rubber at $120^{\circ}C$ was predicted as about 24,000 hrs.

Implementation of Strength Estimation Algorithm on the Metallic Plate Fixation (금속고정용의 강도 평가 알고리즘 구현)

  • Kin, Jeong-Lae;Kim, Kyo-Ho;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.45-54
    • /
    • 2009
  • This study was developed the metallic plate for bone fixation in the neurosurgery and general surgery and plates has a finn place in bone operating and treatment. The plates can be realized to bending strength and stiffness for strength estimation. Maximum point of bending curves has a bending point(P) with maximum load which to applied nearly 0.2% offset displacement. The device's sizing has a ${\Phi}13$ and ${\Phi}18$, and algorithm of strength estimation compared a plate(${\Phi}13$, ${\Phi}18$, ${\Phi}13-{\Phi}18$). The bending strength of the curved metallic plate has to evaluate maximum of a 311N, 387N, 410N, 474N. When a displacement preserve with a load, tensile stress through to press a plate is 274N, 324N, 382N, 394N. The algorithm of strength estimation can be used to support estimation of bending strength and stiffness. Their tool bring to settlement in the new basic algorithm for evidence with varied adjustment.

  • PDF

FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams (합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

Stress Distribution of a Crane Hook by Photoelasticty Using 4-step Phase Shifting Method and finite Element Method (광탄성 4단계 위상 이동법과 유한요소법에 의한 크레인 훅의 응력분포 비교)

  • Baek, Tae-Hyun;Kim, Whan;Lee, Chun-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An experimental study for a crane hook was performed to investigate the stress distribution along a certain line where the maximum and minimum stresses to be developed. On this line, the isoclinic fringe and/or principal stress direction is constant. The crane hook was modeled into a 2-dimensional plate made of urethane rubber called 'Photoflex' The Photoflex is very sensitive to a load and has low photoelastic fringe constant. The Tardy compensation method with the fringe sharpening process and the 4-step phase shifting method, was used for the photoelastic technique. Experimental results by photoelasticity were compared with the calculated stresses from the simple curved beam theory and tile finite element analysis. Ail the results were close to each other.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant (임플란트 경부형상이 주위골 응력에 미치는 영향에 관한 유한요소법적 분석)

  • Chung, Jae-Min;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.394-405
    • /
    • 2009
  • Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG part reduces peri-implant bone stresses. Material and methods: A total of five differently configured TG parts were compared. Base model was the ITI one piece implant (Straumann, Waldenburg, Switzerland) characterized by straight TG part. Other 4 experimental models, i.e. Model-1 to Model-4, were designed to have concave TG part. Finite element analyses were carried out using an axisymmetric assumption. A vertical load of 50 N or an oblique load of 50 N acting at $30^{\circ}$ with the implant's long axis was applied. For a systematic stress comparison, a total of 19 reference points were defined on nodal points around the implant. The peak crestal bone stress acting at the intersection of implant and crestal bone was estimated using regression analysis from the stress results obtained at 5 reference points defined along the mid plane of the crestal bone. Results: Base Model with straight configuration at the transgingival part created highest stresses on the crestal bone. Stress level was reduced when concavity was imposed. The greater the concavity and the closer the concavity to the crestal bone level, the less the crestal stresses. Conclusion: The transgingival part of dental implant affect the crestal bone stress. And that concavely designed one may be used to reduce bone stress.

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis (CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발)

  • Kwon, Yangsu;Kwak, Hyo-Gyoung;Hwang, Ju-Young;Kim, Jin-Kook;Kim, Jong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

Experimental Study on Buckling Restrained Knee Bracing Systems Using Bolted Channel Sections (볼팅 고정 채널 형강 보강재를 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험 연구)

  • Lee, Jin;Lee, Ki-Hak;Lee, Sung-Min;Shin, Ji-Wook;Kim, Young-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.37-46
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected 1-bay 1-story frame. The BRKB system using a bolted channel section developed was composed of a steel plate as a load-resisting core member and two channel sections as a restrainment of the local and global buckling of the core plate. The main purpose of the BRKB system is to be used as an effective tool to re-strengthen/rehabilitate old low- and mid-rise RC frame buildings, which do not have enough seismic resistance to earthquake loadings. The main variables for the test specimens were the size of the core plates, stiffeners and the use of guide plates. The test results showed that the size of the core plate, which was the main element for the load-resisting member, was the most important parameter to achieve ductile behavior under tension as well as compression, until the maximum displacement exceed twice the design drift limit given by the AISC Seismic Provisions.