FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams

합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 황진욱 (한국과학기술원 건설 및 환경공학과)
  • Received : 2009.10.08
  • Accepted : 2009.12.23
  • Published : 2010.02.28

Abstract

A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.

Keywords

References

  1. 김숙향, 박성무 (1997) 하프 프리캐스트 빔-슬래브 접합부의 합성효과에 관한 실험적 연구, 대한건축학회 학술발표논문집, 17(1), pp.535-540.
  2. 곽효경, 김선필 (2005) 부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석, 한국전산구조공학회논문집,18(1), pp.1-12.
  3. 곽효경, 김진국 (2006) 적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과, 한국전산구조공학회논문집, 19(1), pp.1-14.
  4. Bärtschi, R., Fontana, M. (2006) Composite Beams with Nonlinear Material and Connector Behaviour for Low Degrees of Partial Shear Connection, Proceedings of the 5th International Conference on Composite Construction in Steel and Concrete V, Zurich, Switzerland.
  5. Bradford, M.A., Gilbert, R.I. (1992) Composite Beams with Partial Interaction under Sustained Loads, Journal of Structural Engineering, ASCE, 118(7), pp.1871-1883. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871)
  6. CEN (1997) Eurocode 4. Design of Composite Steel and Concrete Structures, Part 2: Composite Bridges (ENV 1994-2).
  7. Dezi, L., Ianni, C., Tarantino, A.M. (1993) Simplified Creep Analysis of Composite Beams with Flexible Connectors, Journal of Structural Engineering, ASCE, 119(5), pp.1484-1497. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:5(1484)
  8. Gara, F., Ranzi, G., Leoni, G. (2006) Displacementbased Formulations for Composite Beams with Longitudinal Slip and Vertical Uplift, International Journal for Numerical Methods in Engineering, 65(8), pp.1197-1220. https://doi.org/10.1002/nme.1484
  9. Gattesco, N. (1999) Analytical Modeling of Non-linear Behavior of Composite Beams with Deformable Connection, Journal of Constructional Steel Research, 52(2), pp.195-218. https://doi.org/10.1016/S0143-974X(99)00026-7
  10. Jasim, N.A. (1999a) Deflections of Partially Composite Beams with Linear Connector Density, Journal of Constructional Steel Research, 49, pp.242-254.
  11. Jasim, N.A., Atalla, A. (1999b) Deflections of Partially Composite Continuous Beams: A Simple Approach, Journal of Constructional Steel Research, 49, pp.291-301. https://doi.org/10.1016/S0143-974X(98)00001-7
  12. Johnson, R.P., Molenstra, N. (1991) Partial Shear Connection in Composite Beams for Buildings, Proceedings-the Institution of Civil Engineers, Part 2, 91, pp.679-704.
  13. Kent, D.C., Park, R. (1971) Flexural Members with Confined Concrete, Journal of the Structural Division, ASCE, 97(ST7), pp.1969-1990.
  14. Kwak, H.G., Filippou, F.C. (1997) Nonlinear FE Analysis of R/C Structures under Monotonic Loads, Computers and Structures, 65(1), pp.1-16. https://doi.org/10.1016/S0045-7949(96)00299-4
  15. Kwak, H.G., Seo, Y.J. (2001) Behaviour of Steel-concrete Composite Beam with Flexible Shear Stud, Proceedings of the Eighth International Conference on Civil and Structural Engineering Computing, Stirling.
  16. Lam, D., El-Lobody, E. (2005) Behavior of Headed Stud Shear Connectors in Composite Beam, Journal of Structural Engineering, 131(1), pp.96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
  17. Loh, H.Y., Uy, B., Bradford, M.A. (2004) The Effects of Partial Shear Connection in the Hogging Moment Regions of Composite Beams Part I - Experimental Study, Journal of Constructional Steel Research, 60(6), pp.897-919. https://doi.org/10.1016/j.jcsr.2003.10.007
  18. Menzies, J.B. (1971) CP117 and Shear Connectors in Steel-concrete Composite Beams Made with Normal-density or Lightweight Concrete, The Structural Engineer, 49(3), pp.137-154.
  19. Nie, J., Cai, C.S. (2003) Steel-Concrete Composite Beams Considering Shear Slip Effects, Journal of Structural Engineering, 129(4), pp.495-506. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495)
  20. Oehlers, D.J., Coughlan, C.G. (1986) The Shear Stiffness of Stud Shear Connections in Composite Beams, Journal of Constructional Steel Research, 6(4), pp.273-284. https://doi.org/10.1016/0143-974X(86)90008-8
  21. Owen, D.R. J., Hinton, E. (1980) Finite elements in Plasticity: Theory and Practice, Swansea: Pineridge Press.
  22. Patnaik, A.K. (2001) Behavior of Composite Concrete Beams with Smooth Interface, Journal of Structural Engineering, 127(4), pp.359-366. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(359)
  23. Queiroz, F.D., Queiroz, G., Nethercot, D.A. (2009) Two-dimensional FE Model for Evaluation of Composite beams,I: Formulation and Validation, Journal of Constructional Steel Research, 65(5), pp.1055-1062. https://doi.org/10.1016/j.jcsr.2009.01.006
  24. Ranzi, G., Gara, F., Ansourian, P. (2006) General Method of Analysis for Composite Beams with Longitudinal and Transverse Partial Interaction, Computers and Structures, 84(31-32), pp.2373-2384. https://doi.org/10.1016/j.compstruc.2006.07.002
  25. Ranzi, G., Zona, A. (2007) A Steel-concrete Composite Beam Model with Partial Interaction Including the Shear Deformability of the Steel Component, Engineering Structure, 29(11), pp.3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
  26. Scott, B.D., Park, R., Priestley, M.J.N. (1982) Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, ACI Structural Journal, 79(1), pp.13-27.
  27. Shim, C.S., Lee, P.G., Yoon, T.Y. (2004) Static Behavior of Large Stud Shear Connectors, Engineering Structures, 26(12), pp.1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011
  28. Sousa Jr., J.B.M., da Silva A.R. (2007) Nonlinear Analysis of Partially Connected Composite Beams Using Interface Elements, Finite Elements in Analysis and Design, 43(11-12), pp.954-964. https://doi.org/10.1016/j.finel.2007.06.010
  29. Tan, K.H., Guan, L.W., Lu, X., Lim, T.Y. (1999) Horizontal Shear Strength of Indirectly Loaded Composite Concrete Beams, ACI Structural Journal, 96(4), pp.533-539.
  30. Wang, A.J., Chung, K.F. (2008) Advanced Finite Element Modelling of Perforated Composite Beams with Flexible Shear Connectors, Engineering Structure, 30(10), pp.2724-2738. https://doi.org/10.1016/j.engstruct.2008.03.001