Browse > Article
http://dx.doi.org/10.4047/jkap.2009.47.4.394

Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant  

Chung, Jae-Min (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Lee, Cheong-Hee (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University)
Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.47, no.4, 2009 , pp. 394-405 More about this Journal
Abstract
Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG part reduces peri-implant bone stresses. Material and methods: A total of five differently configured TG parts were compared. Base model was the ITI one piece implant (Straumann, Waldenburg, Switzerland) characterized by straight TG part. Other 4 experimental models, i.e. Model-1 to Model-4, were designed to have concave TG part. Finite element analyses were carried out using an axisymmetric assumption. A vertical load of 50 N or an oblique load of 50 N acting at $30^{\circ}$ with the implant's long axis was applied. For a systematic stress comparison, a total of 19 reference points were defined on nodal points around the implant. The peak crestal bone stress acting at the intersection of implant and crestal bone was estimated using regression analysis from the stress results obtained at 5 reference points defined along the mid plane of the crestal bone. Results: Base Model with straight configuration at the transgingival part created highest stresses on the crestal bone. Stress level was reduced when concavity was imposed. The greater the concavity and the closer the concavity to the crestal bone level, the less the crestal stresses. Conclusion: The transgingival part of dental implant affect the crestal bone stress. And that concavely designed one may be used to reduce bone stress.
Keywords
One-piece implant; Transgingival design; Finite element method; Crestal bone stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol 2004;75:1605-12   DOI   ScienceOn
2 Sanavi F, Weisgold AS, Rose LF. Biologic width and its relation to periodontal biotypes. J Esthet Dent 1998;10:157-63   DOI   PUBMED
3 Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9   DOI   ScienceOn
4 Natali AN, Pavan PG, Ruggero AL. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 2006;17:67-74   DOI   ScienceOn
5 Frost HM. A 2003 update of bone physiology and Wolff''s Law for clinicians. Angle Orthod 2004;74:3-15   PUBMED   ScienceOn
6 Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants 1991;6:391-8   PUBMED
7 Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Bra?.���.nemark fixtures affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants 1994; 9:345-60   ScienceOn
8 Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58   DOI   ScienceOn
9 Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clinl Oral Implants Res 2001;12:196-201   DOI   ScienceOn
10 Collings EW. The physical metallurgy of titanium alloys. Metals Park (OH): Americal society of metals. 1984
11 Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26   PUBMED   ScienceOn
12 Degidi M, Piattelli A. 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol 2005;31:25-31   DOI   ScienceOn
13 Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol 2004;75:572-7   DOI   ScienceOn
14 Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24   DOI   PUBMED   ScienceOn
15 Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Br$\aa$nemark system. Clin Oral Implants Res 1992;3:104-11   DOI   ScienceOn
16 Hanses G, Smedberg JI, Nilner K. Analysis of a device for assessment of abutment and prosthesis screw loosening in oral implants. Clin Oral Implants Res 2002;13:666-70   DOI   ScienceOn
17 Lavernia CJ, Cook SD, Weinstein AM, Klawitter JJ. An analysis of stresses in a dental implant system. J Biomech 1981;14:555-60   DOI   ScienceOn
18 Chun HJ, Cheong SY, Han JH, Heo SJ, Chung, JP, Rhyu IC, Choi YC, Baik HK, Ku H, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74   DOI   ScienceOn
19 Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94   DOI   ScienceOn
20 Anderson DJ. Measurement of stress in mastication. II. J Dent Res 1956;35:671-3   DOI   PUBMED   ScienceOn
21 Nicolella DP, Lankford J, Jepsen KJ, Davy DT. Correlation of physical damage development with microstructure and strain localization in bone. Am Soc Mechanical Engineers 1997;35:311-2
22 Anderson DJ. Measurement of stress in mastication. I. J Dent Res 1956;35:664-70   DOI   ScienceOn
23 Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11   PUBMED   ScienceOn
24 O'Brien, GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7   DOI   ScienceOn
25 Melsen B. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 1999;69:151-8   PUBMED   ScienceOn
26 Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16   DOI   ScienceOn
27 Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorption. J Korean Acad Implant Dent 2003;22:38-47
28 Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95   PUBMED   ScienceOn
29 Weinberg LA, Kruger B. Biomechanical considerations when combining tooth-supported prostheses. Oral Surg Oral Med Oral Pathol 1994:78:22-7   DOI   ScienceOn
30 Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9   DOI   PUBMED   ScienceOn
31 Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant-a three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86   DOI   ScienceOn
32 Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52   DOI   ScienceOn
33 Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002; 73:322-33   DOI   ScienceOn
34 Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8   DOI   ScienceOn
35 Koh CS, Lee MS, Choi KW. Improved stress analyses of dental systems implant by homogenization technique. J Korean Acad Periodontol 1997;27:263-90   과학기술학회마을   ScienceOn
36 Callan DP, Hahn J, Hogan B, Jenkins G, Krauser JT. Implant failure. Implant Dent 2002;11:109-17   DOI   PUBMED
37 Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Perio Rest Dent 1993;13:409-31   ScienceOn
38 Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24   DOI   ScienceOn
39 Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64   DOI   ScienceOn
40 Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58   DOI   PUBMED
41 Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a threedimensional finite element analysis. Clin Oral Implants Res 2004;15:401-12   DOI   ScienceOn
42 NISA II / DISPLAY III User’'s Manuel, Engineering Mechanics Research Corporation (EMRC)
43 Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofacial Surg 1984;42:705-11   DOI   ScienceOn
44 Borchers L. Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983:62:155-9   DOI   PUBMED   ScienceOn
45 Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 2004;92:523-30   DOI   ScienceOn
46 Craig RG. Restorative dental materials. 8th ed. St. Louis (MO):Mosby:1989. p84
47 Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implantsupported crown. J Prosthet Dent 2005;93:227-34   DOI   ScienceOn
48 Meijer HJ, Starmans FJ, Steen WH, Bosman F. Location of implants in the interforaminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil 1994;21:47-56   DOI   ScienceOn
49 Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108   PUBMED   ScienceOn
50 Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 2000;11:458-64   DOI   PUBMED   ScienceOn
51 Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68   PUBMED   ScienceOn
52 Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7   DOI   ScienceOn