• Title/Summary/Keyword: 힘곡선

Search Result 92, Processing Time 0.021 seconds

A New Method for Measuring M-H Hysteteresis Loop of a Uniaxially Anisotropic Magnetic Material (일축 이방성 자성체의 M-H 이력 곡선 측정의 새방법)

  • Hur, Jeen;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.900-904
    • /
    • 1995
  • We have developed a new torque magnetometric method for measuring the M-H hysteresis loop of a spheroid-shape magnetic material having a uniaxial anisotropy. Our torque magnetometric method gives the saturation magnetization as well as the remnant magnetization, simultaneously. A torque magnetometer having the torque sensitivity of $10^{-6}$ dyn cm could give the extreamly high sensitivity of $10^{-9}$ emu in measuring the magnetic moment, which is high enough to measure the magnetic moment of a monolayer Ni film. The accuracy of the present method was negligibly affected even at the applied fields near the coercivity where magnetization was inhomogeneous.

  • PDF

A Behavior of Curve Section of Reinforced Retaining Wall by Model Test (모형실험을 통한 보강토 옹벽 곡선부 거동특성)

  • Ki, Jung Su;Rew, Woo Hyun;Kim, Sun Kon;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.249-257
    • /
    • 2012
  • The reinforced earth method is financially viable. Furthermore, it overcomes environmental limitations and is therefore employed in retaining walls, slopes, foundations, roads, embankments, and other structures. However, in some cases, reinforced retaining walls are not strong enough in the curved sections and can collapse. Such mishaps are believed to occur because of an unsatisfactory analysis of the curved sections of a reinforced retaining wall. Accordingly, with the aim of investigating the workability and structural safety of curved sections of various types, this study investigates the differences in the estimated horizontal displacements of curved sections of various types and subsequently uses this information to study and analyze preliminary data so that appropriate measures can be taken to resolve alignment issues. The results of an experiment reveal that when a load is applied to curved sections of both concave and convex types, the largest horizontal displacement occurs at the center of the section. In the concave form, the earth pressure force is directed inward, whereas in the convex form, this force is directed outward. As a result, the horizontal displacement in convex forms is larger than that in concave forms. Convex reinforced earth structures are subjected to earth pressures as well as lateral earth pressure, therefore horizontal displacements in convex curved sections is larger than that of concave curved sections.

Acoustic Power Measurement System of Array Probes for Ultrasonic Diagnostic Equipment Using Radiation Force Balance Methods (방사힘 측정법을 이용한 초음파 진단장치용 배열 탐침자의 음향파워 측정시스템)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.355-364
    • /
    • 2010
  • Considering biological safety, it is very important to measure acoustic power from ultrasonic array probe for diagnostic ultrasound imaging applications. In this paper, to measure acoustic power from each element on array probe for ultrasonic diagnostic equipment, we reconstruct and automate the acoustic power measurement system. The acoustic power from linear, phased and curved array were measured and analyzed. As a result of measurement, the effects caused by directivity of sound beam from curved array were founded. To remove these effects, we developed and applied the correction model. The proposed system is useful to evaluate characteristics of the acoustical output power of array probe.

Atomic Force Microscopy Force Mapping Application in Biomedical Research (원자현미경의 나노 힘 측정을 이용한 생의학 연구에의 응용)

  • Cho S.J.;Lee D.J.;Kim E.P.;Lee D.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.77-80
    • /
    • 2005
  • Local probe techniques such as scanning probe microscopy (SPM) or atomic force microscopy (AFM) extended our perception into ultra small world. Specially, the sense of touching was extended by AFM into the micro- and nanoworld and has provided complementary new insights of the microscopic world. In addition, touching objects is an essential step before trying to manipulate things. SPM as a touch sensor not only measure the mechanical properties but also detect different properties such as magnetic, electrical, ionic, thermal, chemical and biophysical properties in nanoscale and even less. Obtaining biophysical measurements, monitoring dynamics and processes together with high-resolution imaging of the biomolecules and cells with rather simpler sample preparation than any other techniques give great attractions to the scientists experimenting with biological samples. Among the many AFM capabilities we will specifically introduce the force plot which is used to measure tip-sample interactions and its application this time.

  • PDF

Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution (고탄성 고분해능을 갖는 응착력 측정장치의 개발)

  • Kim, Gyu-Sung;Yoon, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

Compression and Decompression Properties of Some Vegetables (몇가지 채소류의 압축 및 비압축 특성)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.266-272
    • /
    • 1997
  • In order to investigate the compression and decompression properties of cucumber, radish, garlic, ginger and potato, edible parts of samples were prepared to size of ${\Phi}\;5\;mm{\times}H\;5\;mm$, and force deformation relationship during application and removal of force were observed. Compositions of sample and cell characteristics were measured, and correlations between them were investigated. Deformation rate was large in initial stage of compression and decreased afterward, but the reverse trends were observed in the decompression. The time and deformation to 9 N were large of 5.30 sec and 1.344 mm in potato, and small of 4.62 sec and 0.896 mm in garlic, respectively. Force(y)-deformation(x) curve between compression and decompression were clearly showed hysteresis loop and relationship of x and y were as follows: y=esp (a+b log(x)). The maximum work was $3.888{\sim}5.099{\times}10^{-3}\;J$ for potato in compression and $2.09{\times}10^{-3}\;J$ for garlic in decompression. Irrecoverable work were large as $77{\sim}96%$ in cucumber, radish and potato, and small as $36{\sim}42%$ in garlic. Compression deformation were large as $1.016{\sim}1.344\;mm$ in potato, and small as $0.656{\sim}0.896\;mm$ in garlic. Degree of elasticity were large as $0.756{\sim}0.777$ in garlic, and small as $0.301{\sim}0.465$ in radish and potato. Compression and decompression characteristic values were showed high correlation with moisture, viscosity of juice, ceil size, density and regularity.

  • PDF

유한요소해석에 의한 나노인덴테이션의 탄소성 변형에 관한 연구

  • 양현윤;조상봉;김지수;윤존도;김봉섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.273-273
    • /
    • 2003
  • 나노인덴테이션은 압자를 수 $\mu\textrm{N}$의 힘으로 시편에 압입을 시켜 재료의 경도나 탄성계수와 같은 기계적 특성을 평가하는 압입경도 시험법이다. 압입 변위를 나노미터범위로 조절할 수 있어 기존에 접근할 수 없었던 박막의 기계적 특성을 평가하는데 응용이 넓어지고 있다. 본 연구에서는 나노인덴테이션에서 제공되는 하중-변위곡선과 유한요소해석의 결과를 비교하여 유한요소해석의 신뢰성을 검증하고, 유한요소해석에서 여러 가지 재료의 특성에 따른 파일업과 싱크인 현상을 규명 하고자 한다.

  • PDF