• Title/Summary/Keyword: 흡수 영상

Search Result 387, Processing Time 0.026 seconds

Bone Region Extraction by Dual Energy X-ray Absorbtion Image Decomposition (Dual Energy X-ray 흡수 영상의 분해를 통한 뼈 영역 추출)

  • Kwon, Ju-Won;Cho, Sun-Il;Ahn, Young-Bok;Ro, Yong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1233-1241
    • /
    • 2009
  • Over the 50 percents of women who are older than 45 years have osteoporosis. Because people hardly recognize this disease by themselves, the researches that measure bone mineral density have been doing widely to detect osteoporosis in the early stage. The most widely used methods for bone mineral density measurement are based on the X-ray imaging. Among them, DEXA(Dual-energy X-ray Absorptiometry) imaging is one of the important methods in bone mineral density measurement. DEXA images are useful methods to increase diagnosis efficiency by reducing anatomic noise as two images obtained from two different energy levels. However, it has some problems to a calibration parameter determined by the heuristic method for bone extraction. In this paper, we propose the method to extract bone in DEXA image using calibration parameter based on anatomic attenuation coefficient. The experimental results reveal that the proposed method is effective.

  • PDF

Model Simulation for Assessment of Image Acquisition Errors Affecting Electron Tomography (영상 자료 획득시의 오류가 전자토모그래피 결과에 미치는 영향 고찰-모델 시뮬레이션을 중심으로)

  • Jou, Hyeong-Tae ;Lee, Su-Jeong;Kim, Youn-Joong;Suk, Bong-Chool
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • This simulation study examined the effect of data acquisition error including the data type of TEM image, and incident beam intensity of the tilt series on 3D tomograms. Simulation was performed with the 3D head phantom model of Kak and Slaney, and the slightly modified 3D head phantom model with enhanced difference in absorption coefficients. Reconstructed tomogram for the original head phantom model using 8-bit gray-scale image was distorted with extremely high level of noise, while an acceptable result was obtained for the modified model. The results for the original model using wrong formulation for the transmitted beam intensity was proved to be incorrect. The high level of noise along the z direction was found in case of the modified model. On the other hand, the wrong value of incident beam intensity in both models gave distorted results. In order to reconstruct an artifacts-free 3D structure from the projections with invisible features in electron tomography, the 16-bit projection images should be used with the correct incident beam intensity which is applied to Beer's law.

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Estimating Carbon Sequestration in Forest using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 산림의 이산화탄소 흡수량 추정)

  • Kim, So-ra;Lee, Woo-kyun;Kwak, Han-bin;Choi, Sung-ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.324-330
    • /
    • 2009
  • The objective of this study is to estimate the carbon sequestration in forest stands using KOMPSAT-2 imagery. For estimating the amount of carbon sequestration, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the Intergovernmental Panel on Climate Change (IPCC) guideline, was used to convert the stand biomass into the amount of carbon sequestration. Thereafter, the KOMPSAT-2 imagery was classified with the segment based classification (SBC) method in order to quantify carbon sequestration by tree species. This approach, estimating the amount of carbon sequestration for certain species in stand, can be available to extend plot-based carbon sequestration to stand-based carbon sequestration.

Selection of proper wavelenth for determination of CDOM absorption coefficient using hyperspectral images in upstream reach of Baekje weir (백제보 상류하천구간의 초분광 영상을 이용한 CDOM 흡수계수 결정을 위한 적정파장 선정)

  • Kim, Jinuk;Jang, Wonjin;Lee, Yonggwan;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.85-85
    • /
    • 2021
  • CDOM(Colored or Chromophoric Dissolved Organic Matter)은 바다, 호수 및 강에서 담수, 오수, 퇴적물 등으로부터 공급된 유기물질의 일종으로 가시광선에서 빛을 흡수하는 성질을 가지며, 2016년부터 환경부에서 선정한 하천, 호수 등 방류수의 수질오염 표준인 TOC(Total Organic Carbon)를 간접 추정할 수 있는 매개변수가 될 수 있다. 따라서, 본 연구에서는 백제보 상류 23 km 구간을 대상으로 2개년(2016~2017) 중 7일의 초분광영상 자료를 활용하여 내륙지역의 CDOM에 대한 적정 반사도 밴드값(Rrs)과 CDOM을 추정하는 알고리즘을 개발하고자 한다. CDOM은 흡수계수(αCDOM)를 통해 간접 추정되며, 흡수계수의 기준 파장값(λ)은 연구별로 350 nm, 375 nm, 400 nm, 412 nm 및 440 nm 등 다르게 나타난다. 초분광영상은 AsaFENIX 초분광 센서에서 관측된 380~970 nm까지 4 nm 간격, 127개 대역의 분광해상도와 2 m의 공간해상도를 가진 영상을 활용하였으며, 자료의 연속성을 위해 smoothing 기법을 활용하여 가공하였다. 추정 알고리즘은 Random forest를 활용하였으며, 70%의 trainning과 30%의 test로 구분하여 적용하였다. 산출된 CDOM은 결정계수(R2), Nash-Sutcliffe efficiency(NSE)를 이용하여 실측 CDOM과 비교하였다. 흡수계수별 CDOM의 산정 결과 αCDOM(350 nm)의 trainning, test에서 각각 R2가 0.71, 0.74, NSE가 0.25, 0.49로 가장 높았으며, 적정 반사도 밴드값은 Rrs(466), Rrs(493), Rrs(548), Rrs(641)를 사용하였을 때 trainning, test에서 각각 R2가 0.93, 0.90, NSE가 0.85, 0.69로 가장 높게 나타났다.

  • PDF

A Study of the Velocity Distribution and Vorticity Measurement in the Pump Sump Using PIV (PIV를 이용한 흡수조 내 유속분포 및 와류강도 측정에 대한 연구)

  • Byeon, Hyun Hyuk;Kim, Seo Jun;Yoon, Byung Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The climate change occurring all over the world increases the risk, specially in urban area, Accordingly, rainwater pumping station expansion is required than before. In order to increase the efficiency of the rainwater pumping station, the analysis of flow characteristics in the pump sump is needed for vortex control. Many efforts have been made to illuminate the vortex behavior using PIV, but any reliable results have not been obtained yet, because of the limitations in image capturing and dependency of measured velocity values on the interrogation area and time interval used for velocity calculation. In this study, therefore, experiments were carried out to find out the limitation of PIV and estimate the validation of the velocity values associated with the analysis parameters such as interrogation area, time interval, grid size. For the experimental condition used in this study, the limitation of PIV and the effects of parameters on the velocity estimation are presented.

Study on Behavior Analysis of Crash Cushion Using Analysis Data of High-Speed Camera (고속카메라 영상분석 데이타를 이용한 충격흡수시설의 충돌거동 분석에 관한 연구)

  • Jang, Dae-Young;Ko, Man-Gi;Lee, Yoon-Ki;Joo, Jae-Woong
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • Collision behavior of clash cushion occurs for a second of less than 0.4sec usually so that it is too hard to calculate numerically. Therefore, for development of trash cushion, it rely on full-scale vehicle crash test without any design procedure. Occupant safety indices if calculated from acquired data by data measurement system and collision behavior of vehicle and crash cushion is filming using high-speed camera in the crash test. But practical ufo scope of high-speed camera is limited and it is not using to calculated the occupant safety indices or analyzed the energy dissipated mechanism of crash cushion. This work is to estimate to be suitable or not for compare the data from measurement system with the data from high-speed camera. And also it is to grope for practical use scheme to calculation of occupant safety indices or analysis of collision behavior.

  • PDF

Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma (반복적인 $^{131}I$ rituximab 방사면역치료를 시행 받은 비호지킨 림프종 환자 군에서 종양 부위의 영상기반 방사선 흡수선량 평가와 임상적 의의)

  • Byun, Byung-Hyun;Kim, Kyeong-Min;Woo, Sang-Keun;Choi, Tae-Hyun;Kang, Hye-Jin;Oh, Dong-Hyun;Kim, Byeong-Il;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2009
  • Purpose: We assessed the absorbed dose to the tumor ($Dose_{tumor}$) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with $^{131}I$ rituximab for NHL. Materials and Methods: Patients with NHL (n=4) were administered a therapeutic dose of $^{131}I$ rituximab. Serial WB planar images alter RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROls were drawn on the region of tumor (n=7) and left medial thigh as background, and $Dose_{tumor}$ was calculated. The correlation between $Dose_{tumor}$ and the CT-based tumor volume change alter RIT was analyzed. The differences of $Dose_{tumor}$ and the tumor volume change according to the number of RIT were also assessed. Results: The values of absorbed dose were $397.7{\pm}646.2cGy$ ($53.0{\sim}2853.0cGy$). The values of CT-based tumor volume were $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2cc$), and the % changes of tumor volume before and alter RIT were $-29.8{\pm}44.3%$ ($-100.0%{\sim}+42.5%$), respectively. $Dose_{tumor}$ and the tumor volume change did not show the linear relationship (p>0.05). $Dose_{tumor}$ and the tumor volume change did not correlate with the number of repeated administration (p>0.05). Conclusion: We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

X-ray Absorptiometry Image Enhancement using Sparse Representation (Sparse 표현을 이용한 X선 흡수 영상 개선)

  • Kim, Hyungil;Eom, Wonyong;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • Recently, the evaluating method of the bone mineral density (BMD) in X-ray absorptiometry image has been studied for the early diagnosis of osteoporosis which is known as a metabolic disease. The BMD, in general, is evaluated by calculating pixel intensity in the bone segmented regions. Accurate bone region extraction is extremely crucial for the BMD evaluation. So, a X-Ray image enhancement is needed to get precise bone segmentation. In this paper, we propose an image enhancement method of X-ray image having multiple noise based sparse representation. To evaluate the performance of proposed method, we employ the contrast to noise ratio (CNR) metric and cut-view graphs visualizing image enhancement performance. Experimental results show that the proposed method outperforms the BayesShrink noise reduction methods and the previous noise reduction method in sparse representation with general noise model.