DOI QR코드

DOI QR Code

A Study of the Velocity Distribution and Vorticity Measurement in the Pump Sump Using PIV

PIV를 이용한 흡수조 내 유속분포 및 와류강도 측정에 대한 연구

  • 변현혁 (국립재난안전연구원 방재연구실) ;
  • 김서준 (명지대학교 산업기술연구소) ;
  • 윤병만 (명지대학교 토목환경공학과)
  • Received : 2018.11.23
  • Accepted : 2020.02.05
  • Published : 2020.04.01

Abstract

The climate change occurring all over the world increases the risk, specially in urban area, Accordingly, rainwater pumping station expansion is required than before. In order to increase the efficiency of the rainwater pumping station, the analysis of flow characteristics in the pump sump is needed for vortex control. Many efforts have been made to illuminate the vortex behavior using PIV, but any reliable results have not been obtained yet, because of the limitations in image capturing and dependency of measured velocity values on the interrogation area and time interval used for velocity calculation. In this study, therefore, experiments were carried out to find out the limitation of PIV and estimate the validation of the velocity values associated with the analysis parameters such as interrogation area, time interval, grid size. For the experimental condition used in this study, the limitation of PIV and the effects of parameters on the velocity estimation are presented.

최근 도시지역의 불투수율 증가로 인해 내수침수 위험성이 증가하고 있다. 이에 도시침수 방지대책으로 빗물펌프장의 증설 및 신설에 대한 필요성이 부각되고 있다. 빗물펌프장의 효율을 증가시키기 위해서는 흡수조에서 발생하는 와류의 제어가 필요하다. 따라서 와류를 효과적으로 제어하기 위해서 펌프 흡수조 내 흐름특성 분석이 필요하다. 이에 본 연구에서는 입자영상유속측정법을 이용하여 흡수조 내 유속분포 및 와류강도를 측정하기 위한 촬영 및 분석 조건들에 대한 민감도 분석을 실시하여 흡수조 내 유속 및 와류강도 측정의 한계를 확인하고 최적 방법들을 제시하고자 한다. 이를 위해 우선 레이저를 이용하여 흡수조 내 흐름을 촬영하였고, 상관영역 크기와 촬영 시간간격 및 측점 간격의 변화에 따른 유속분포와 와도분포를 비교하여 민감도를 검토하였다. 본 연구에서 대상으로 한 흐름조건의 자유수면와류의 경우 상관영역 크기가 와류 크기의 약 13 % 이상에서는 유속 산정 정확도가 감소하는 것으로 나타났으며, 연속되는 두 장의 영상 간 입자의 변위가 1 mm 이상이 되면 연직방향의 흐름 때문에 이탈되는 입자들이 많아져 정확도가 감소하는 것으로 나타났다. 또한 자유수면와류가 차지하는 격자의 개수가 증가할수록 와도의 크기가 커지는 것으로 나타났다. 이와 같은 연구결과는 입자영상유속계를 활용한 흡수조 내 유속분포 및 와류강도 측정 시 촬영 및 영상분석 조건을 결정하는데 기초자료로 활용될 것으로 기대된다.

Keywords

References

  1. Ansar, M., Nakato, T. and Constantinescu, G. (2002). "Numerical simulations of inviscid three-dimensional flows at single and dual-pipe intakes." Journal of Hydraulic Research, Vol. 40, No. 4, pp. 461-470. https://doi.org/10.1080/00221680209499888
  2. Choi, W. J., Choi, Y. D., Kim, C. G. and Lee, Y. H. (2010). "Flow uniformity in a multi-intake pump sump model." Journal of Mechanical Science and Technology, Vol. 24, No.7, pp. 1389-1400 (in Korean). https://doi.org/10.1007/s12206-010-0413-5
  3. Gui, L., Merzkirch, W. and Fei, R. (2000). "A digital mask technique for reducing the bias error of the correlation-based PIV interrogation algorithm." Experiments in Fluids, Vol. 29, pp. 30-35. https://doi.org/10.1007/s003480050423
  4. Hart, D. P. (2000). "PIV error correction." Experiments in Fluids, Vol. 29, No. 1, pp. 13-22. https://doi.org/10.1007/s003480050421
  5. Hu, H., Saga, T., Kobayashi, T., Okamoto, K. and Taniguchi, N. (1998). "Evalution of the cross correlation method by using PIV standard images." Journal of Visualization, Vol. 1, No. 1, pp. 87-94. https://doi.org/10.1007/BF03182477
  6. Jung, H. B. and Noh, S. H. (2017). "Flow analysis of the sump pump." Korea Academy Industrial Cooperation Society, Vol. 18, No. 3, pp. 673-680 (in Korean).
  7. Kim, C. G., Choi, Y. D., Choi, J. W. and Lee, Y. H. (2004). "A study on the effectiveness of an anti vortex device in the sump model by experiment and CFD." The Hydraulic Machinery and Systems 26th IAHR Symp, Beijing, China.
  8. Kim, J. Y., Chung, K. N., Kim, H. G. and Kim, Y. H. (2005). "Numerical analysis of the subsurface vortices in the pump sump models." Korean Society for Fluid Machinery, KSFM, Vol. 12, pp. 593-597 (in Korean).
  9. Kim, S. J. (2013). Determination of interrogation-area size based on error analysis for the surface image velocimetry, Ph.D. Thesis, Myong-Ji Unversity, Young-In, Gyeonggi-do (in Korean).
  10. Li, H. F. and Chen, H. X. (2008). "Experimental and numerical investigation of free surface vortex." Journal of Hydrodynamics, Vol. 20, No. 4, pp. 485-491. https://doi.org/10.1016/S1001-6058(08)60084-0
  11. Long, N. I., Shin, B. R. and Doh, D. H. (2012). "Study on surface vortices in pump sump." Korean Fluid Machinery Association, Vol. 15, No. 5, pp. 60-66.
  12. Luff, J. D., Drouillard, T., Rompage, A. M., Linne, M. A. and Hertzberg, J. R. (1999). " Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms." Experiments in Fluids, Vol. 26, pp. 36-54. https://doi.org/10.1007/s003480050263
  13. Okamura, T., Kamemoto, K. and Matsui, J. (2007). "CFD Prediction and model experiment on suction vortices in pump sump." The 9th Asian International Conference on Fluid Machinery, AICFM9-053, Jeju, Korea.
  14. Park, N. S., Kim, S. S., Hyun, S. R., Park, J. H. and Ahn, Y. S. (2010). " Numerical analysis on the flow vortex in a multi pump intake using a pump sump model." Journal of Korean Society of Water and Wastewater, Vol. 24, No. 2, pp. 211-217 (in Korean).
  15. Park, N. S., Kim, S. S., Jeong, W. C., Kim, J. O. (2011). "Modifications to hydraulic structures for anti-submerged vortex in a multi pump intake using CFD simulation technique." Journal of Korean Society of Water and Wastewater, Vol. 25, No. 1, pp. 31-39 (in Korean).
  16. Park, S. E. and Roh, H. W. (2007). "CFD Prediction on vortex in sump intake at pump station." The KSFM Journal of Fluid Machinery, Vol. 10, No. 4, pp. 39-46 (in Korean). https://doi.org/10.5293/KFMA.2007.10.4.039
  17. Raffel, M., Willert, C., Wereley, S. and Kompenhans, J. (2007). Particle image velocimetry, a practical guide, Springer, Berlin.
  18. Rajendran, V. P. and Patel, V. C. (2000). "Measurement of vortices in model pump-intake bay by PIV." Journal of Hydraulic Engineering, Vol. 126, No. 5, pp. 322-334. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(322)
  19. Rajendran, V. P., Constantinescu, S. G. and Patel, V. C. (1999). "Experimental validation of numerical model of flow in pump- intake bays." Journal of Hydraulic Engineering, Vol. 125, No. 11, pp. 1119-1125. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1119)
  20. Sarkardeh, H., Reza Zarrati, A., Jabbari, E. and Marosi, M. (2014). "Numerical simulation and analysis of flow in a reservoir in the presence of vortex." Engineering Applications of Computational Fluid Mechanics, Vol. 8, No. 4, pp. 598-608. https://doi.org/10.1080/19942060.2014.11083310
  21. Shukla, S. N. and Kshirsagar, J. T. (2008). "Numerical prediction of air entrainment in pump intakes." Proc. of the 24th international pump users Symp, Texas A&M University, USA, 2008, pp. 29-33.