Browse > Article

Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma  

Byun, Byung-Hyun (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Kim, Kyeong-Min (Lab. Of Nuclear Medicine Basic Research, Korea Institute of Radiological and Medical Sciences)
Woo, Sang-Keun (Lab. Of Nuclear Medicine Basic Research, Korea Institute of Radiological and Medical Sciences)
Choi, Tae-Hyun (Lab. Of Nuclear Medicine Basic Research, Korea Institute of Radiological and Medical Sciences)
Kang, Hye-Jin (Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences)
Oh, Dong-Hyun (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Kim, Byeong-Il (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Cheon, Gi-Jeong (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Choi, Chang-Woon (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Lim, Sang-Moo (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
Publication Information
Nuclear Medicine and Molecular Imaging / v.43, no.1, 2009 , pp. 60-71 More about this Journal
Abstract
Purpose: We assessed the absorbed dose to the tumor ($Dose_{tumor}$) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with $^{131}I$ rituximab for NHL. Materials and Methods: Patients with NHL (n=4) were administered a therapeutic dose of $^{131}I$ rituximab. Serial WB planar images alter RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROls were drawn on the region of tumor (n=7) and left medial thigh as background, and $Dose_{tumor}$ was calculated. The correlation between $Dose_{tumor}$ and the CT-based tumor volume change alter RIT was analyzed. The differences of $Dose_{tumor}$ and the tumor volume change according to the number of RIT were also assessed. Results: The values of absorbed dose were $397.7{\pm}646.2cGy$ ($53.0{\sim}2853.0cGy$). The values of CT-based tumor volume were $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2cc$), and the % changes of tumor volume before and alter RIT were $-29.8{\pm}44.3%$ ($-100.0%{\sim}+42.5%$), respectively. $Dose_{tumor}$ and the tumor volume change did not show the linear relationship (p>0.05). $Dose_{tumor}$ and the tumor volume change did not correlate with the number of repeated administration (p>0.05). Conclusion: We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.
Keywords
Radioimmunotherapy; dosimetry; PET; PET/CT; lymphoma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 DeNardo GL, Juweid ME, White CA, Wiseman GA, DeNardo SJ. Role of dosimetry in radioimmunotherapy planning and treatment dosing. Critical Rev Oncol Hematol 2001;39:203-18   DOI   ScienceOn
2 Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with $^{131}$I MIBG. J Nucl Med 2001;42:1713-21   ScienceOn
3 Moog F, Bangerter M, Diederichs CG, Guhlmann A, Kotzerke J, Merkle E, et al. Lymphoma: role of FDG-PET in nodal staging. Radiology 1997;203:795-800   DOI   PUBMED   ScienceOn
4 Hong SP, Hahn JS, Lee JD, Bae SW, Youn MJ. $^{18}F-fluorodeoxyglucose-positron emission tomography in the staging of malignant lymphoma compared with CT and $^{67}$Ga scan. Yonsei Med J 2003;44:779-86   DOI   PUBMED   ScienceOn
5 Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora's box? Int J Radiat Oncol Biol Phys 2004;59:4-5   DOI   PUBMED   ScienceOn
6 Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51-60   DOI   ScienceOn
7 Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II $^{90}$Y-Zevalin ($^{90}$Y-ibritwnomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin's lymphoma. Eur J Nucl Med 2000;27:766-77   DOI   ScienceOn
8 Witzig TE, Flinn IW, Gordon LI, Vo K, Wiseman GA, Flinn IW, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory non-Hodgkin's lymphoma. J Clin Oncol 2002;20:3262-69   DOI   ScienceOn
9 Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with $^{90}Y$-DOTATOC,Tyr3-octreotide and $^{177}$Lu-DOTA0,Tyr3-octreotate. J Nucl Med 2005;46(Suppl 1):83S-91S   ScienceOn
10 Liu A, Wiliams LE, Wong JYC, Williams LE, Liu A, Wilczynski S et al. Monte Carlo assisted voxel source kernal method (MAVSK) for internal dosimetry. J Nucl Med Biol 1998;25:423-33   DOI   ScienceOn
11 Ulaner GA, Colletti PM, Conti PS. B-cell non-Hodgkin's lymphoma: PET/CT evaluation after $^{90}$Y-ibritwnomab tiuxetan radioimmunotherapy: initial experience. Radiology 2008;246:895-902   DOI   PUBMED   ScienceOn
12 Giraud P, Grahek D, Montravers F, Carette MF, Deniaud-Alexandre E, Julia F, et al. CT and $^{18}$F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 2001;49:1249-57   DOI   ScienceOn
13 Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. $^{131}$I tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005;352:441-49   DOI   ScienceOn
14 Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78-86   DOI   PUBMED   ScienceOn
15 Shah J, Wang W, Harrough VD, Saville W, Meredith R, Shen S, et al. Retreatment with $^{90}$Y ibritwnomab tiuxetan in patients with B-cell non-Hodgkin's lymphoma. Leuk Lynphoma 2007;48:1736-44   DOI   ScienceOn
16 Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS. Accurate dosimetry in $^{131}$I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dese calculation. J Nucl Med 2005;46:840-9   ScienceOn
17 Yoriyaz H, Stabin MG, dos Santos A Monte Carlo MCNP-4B-hased absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 2001;42:662   PUBMED   ScienceOn
18 Nestle U, Kremp S, Grosu AL. Practical integration of $^{18}$F-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209-25   DOI   ScienceOn
19 Joyce JM, Degirmenci B, Jacobs S, McCook B, Avril N. FDG PET CT assessment of treatment response after 90y ibritwnomab tiuxetan radioimmunotherapy. Clin Nucl Med 2005;30:564-8   DOI   ScienceOn
20 Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 2004;45:559-66   PUBMED   ScienceOn
21 Carlo G, Kenneth R, Giuseppe LC. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125-34   DOI   ScienceOn
22 Virgolini I, Britton K, Buscornbe J, Moncayo R, Paganelli G, Riva P. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med 2002;32:148-55   DOI   ScienceOn
23 Ljungberg M, Sjo'' green K, Liu X, Frey E, Dewaraja Y, Strand SE. A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for $^{131}$I using Monte Carlo simulation. J Nucl Med 2002;43:1101-9   ScienceOn
24 DeNardo GL, Hartmann Siantar CL, DeNardo SJ. Radiation dosimetry for radionuclide therapy in a nonmyeloablative strategy. Cancer Biother Radiopharm 2002;17:107-18   DOI   ScienceOn
25 Klaus B and Hubert MT. Accurate dosimetry: an essential step towards good clinical practice in nuclear medicine. Nucl Med Commun 2005;26:581-6   DOI   ScienceOn
26 De Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions-plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30:463-69   DOI   PUBMED   ScienceOn
27 Kaminski MS, Zelenetz AD, Press OW, Saleh M, Leonard J, Fehrenbacher L. Pivotal study of iodine $^{131}$I tositumomab for chemotherapy-refractory low-grade or transformed low grade B-cell non-Hodgkin's lymphomas. J Clin Oncol 2001;19:3918-28   DOI   ScienceOn
28 Reubi JC, Ma''ke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005;46(Suppl 1):67S-75S   PUBMED   ScienceOn
29 Bishton MJ, Leahy MF, Hicks RJ, Turner JH, McQuillan AD, Seymour JF. Repeat treatment with $^{131}$I rituximab is safe and effective in patients with relapsed indolent B-cell non-Hodgkin's lymphoma who had previously responded to $^{131}$I rituximab. Annals of Oncology 2008;19:1629-33   DOI   ScienceOn
30 Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. An overview of the peptide receptor radionuclide therapy with 3 different radiolabeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):62S-6S   PUBMED   ScienceOn
31 Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole body emission tomography using $^{18}$F fluorodeoxyglucose for post treatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has a higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999;94:429-33   PUBMED   ScienceOn
32 Furhang EE, Chui CS, Sgouros G. A Monte Carlo approach to patient specific dosimetry. Med Phys 1996;23:1523   DOI   ScienceOn
33 Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, Paganelli G. Receptor radionuclide therapy with $^{90}Y$-[DOTA]0-Tyr3-octreotide ($^{90}Y$-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31:1038-46   PUBMED   ScienceOn
34 Koral KF, Dewaraja Y, Clarke LA, Li J, Zasadny KR, Rommelfanger SG, et al. Tumor-absorbed-dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin's lymphoma; preliminary report. Cancer Biother Radiopharm 2000;15:301-3   DOI   PUBMED   ScienceOn
35 Koral K, Francis I, Kroll S, Zasadny KR, Kaminski MS, Wahl RL. Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received $^{131}$Y tositwnomab therapy. Cancer 2002;94(Suppl 1):1258-63   DOI   PUBMED   ScienceOn
36 Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Bur J Nucl Med 1998;25:721-8   DOI   PUBMED   ScienceOn
37 Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with $^{90}$Y-labeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):92S-8S   ScienceOn
38 Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin's lymphoma to $^{131}$I-anti-B1 radioimmunotherapy: evaluation with FDG-PET. J Nucl Med 2000;41:999-1005   ScienceOn
39 Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA. Radiolabeled somatostatin analog [$^{177}$LuDOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Gin Oncol 2005;23:2754-62   DOI
40 Kaminski MS, Radford JA, Gregory SA, Leonard JP, Knox SJ, Kroll S et al. Re-treatment with $^{131}$I tositwnomab in patients with non-Hodgkin's lymphoma who had previously responded to $^{131}$I tositwnomab. J Clin Oncol 2005;23:7985-93   DOI   ScienceOn