• 제목/요약/키워드: 흡기 3밸브

검색결과 25건 처리시간 0.025초

흡기관 분사식 수소기관의 실용화를 위한 MCVVT 연구용 수소기관의 개발과 기본 특성 (A Development and Basic Characteristics of MCVVT Research Hydrogen Engine for Practical Use of External Mixture Hydrogen-Fueled Engine)

  • 강준경;;노기철;이종태;이제형
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.255-262
    • /
    • 2006
  • To develop a hydrogen fueled engine with external mixture which uses in high reliability, low cost and low pressure, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and its basic characteristics analyzed. The MCVVT developed has high reliability and the valve timing change is possible in wide range continuously. Though the mechanical loss due to MCVVT system is increased a little, back-fire suppression research for valve overlap period is no difficulty. It's also confirmed that the hydrogen-fueled engine has lower torque and is possible high lean burn. As fuel-air equivalence ratio is high, as thermal efficiency is remarkable increasing.

흡.배기 밸브의 밀착이상이 엔진연소특성에 미치는 영향 (The Effects of an Abnormal Adjusting Intake and Exhaust Valves on the Combustion Characteristics of SI Engine)

  • 박경석;손성만
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.123-129
    • /
    • 2005
  • The unbalance of the power output, noise, and vibration is happened by the disproportionate pressure variation in the cylinder. For this reason, decrease of the pressure in the cylinder and increase of the residual gas effect on the engine performance. If the abnormal combustion is continued, the crack would be occurred in the engine block. And it could be broken down. For the normal combustion of the SI engine, it is important to supply the balanced mixture by each operating condition. In this study, it was tested the combustion characteristics in the cylinder according to the abnormal adjusting of intake & exhaust valve. This test is willing to set a basic data's analysis fur developing an automotive diagnosis system by analyzing the pressure in the cylinder, the output signal of MAP sensor, the exhaust gas, etc.

흡기포트 및 밸브 형상에 따른 정상 유동 특성 (Numerical analysis of flow characteristics with intake port and valve design)

  • 이상진;김성철;김득상;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

전산유체해석을 통한 RE엔진 흡기포트의 개발 (Development of Intake Port for Range Extender Engine Using CFD Simulation)

  • 김창수;박성영
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2575-2580
    • /
    • 2013
  • 본 논문에서는 RE엔진에 적용하기위한 흡기포트를 CFD 기술을 활용하여 개발하였다. 3차원 모델링을 진행하고 전산유체해석을 진행하였으며, 계산된 유량계수와 스월계수를 실험결과와 비교 분석하였다. 흡기포트의 convex 및 concave부 곡률을 최적화하여 Recirculation의 발생과 유동저항을 저감하였다. 결과적으로, 계산된 평균 유량계수는 0.383이고, 평균 스월수는 1.544로 일반적인 2밸브 엔진 시스템의 평균성능에 상회하는 우수한 성능을 나타내었다.

흡기밸브 형상에 따른 3차원 유동특성 해석 (Three-dimensional Analysis of Flow Characteristics for Intake Valve Design)

  • 김득상;이상진;조용석;엄인용
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.

LIVC 적용 밀러사이클 스파크점화기관의 유동특성 연구 (A Study on Flow Characteristics of Spark-Ignited Engine with Variable Intake Valve Closing Timing for Miller Cycle)

  • 정진호;강선제;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, to research in-cylinder flow characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle. 3D simulation study were used 6 different intake valve profile with $CAD10^{\circ}$ gap for retard intake valve closing timing. Comparison of In-cylinder flow pattern characteristic were accompanied between Base and LIVC. And the efficiency of volume and the work of compression were analyzed with simulation study. When intake valve closing angle was retarded in $CAD50^{\circ}$, the pressure in cylinder was decreased about 12~13 bar and volume efficiency was reduced about 16%. The efficiency of volume and the work of compression were reduced on LIVC.

터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능 (Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine)

  • 윤준규;차경옥
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

동일열량공급하의 밸브오버랩기간 변화에 대한 역화억제 검토 (A Investigation of Back Fire Control with Valve Overlap Period Change In the Same Supply Energy)

  • 강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.348-355
    • /
    • 2007
  • To grasp a feasibility of back fire control by valve overlap period, back fire limit equivalence ratio was estimated with valve overlap period which has the same supply energy and positive intake pressure as valve overlap period $300^{\circ}\;CA$. As the result, it was shown that the smaller valve overlap period has the higher back fire limit equivalence ratio under valve overlap period $300^{\circ}\;CA$ as well as VOP $0^{\circ}\;CA$. This result means that expansion of back fire equivalence ratio by decreasing valve overlap period was caused by decrease of back flow duration of flame from in-cylinder to intake port than decrease of lower supply energy.

4사이클 왕복동식 엔진에 있어서 흡배기 변동압 측정치를 이용한 흡기효율 최적화 컴퓨터 시뮬레이션 (Optimization of valve events in a 4 cycle reciprocating engine using measured intake and exhaust port pressures)

  • 오세종;진영욱;정재화
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.500-507
    • /
    • 1989
  • 본 논문에서는 흡배기 변동압을 실측하여 이것을 계산의 입력수치로 사용 하는 전산프로그램을 개발하여 간단하면서도 정확한 사이클 시뮬레이션이 가능하도록 하여 체적효율을 예측하였다.

저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성 (A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.