• Title/Summary/Keyword: 흙시멘트

Search Result 85, Processing Time 0.02 seconds

Experimental study on usability of soil pavement using weathered granite soil and organic solidification agent (화강풍화토와 유기계 고화제를 이용한 흙포장의 사용성에 관한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Lee, Yong-Soo;Lee, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • The method to replace asphalt and cement is needed to reduce the carbon emission on road. Polymeric material which is light and easy to handle while having complex function with less carbon emission would be highly effective when it replaced soil pavement containing cement. This study is intended to identify the usability of soil pavement containing organic solidification agent only through the field test. Pavement on bike trail still satisfied required bearing capacity coefficient in 3 months. Pavement after passing 1.6 bil units of bike through pavement acceleration test that simulated a long-term serviceability during a short-time still remained unaffected, demonstrating a long-term serviceability of soil pavement.

Characterization of Flowable Fill with Ferro-Nickel Slag Dust (페로니켈 슬래그 미분말을 이용한 유동성 뒤채움재 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.16-21
    • /
    • 2017
  • The aim of this study was to utilize ferronickel slag produced in the manufacture of stainless steel as a flowable backfill material for underground use using crushed fine powder. Experimental combinations were made using two components: Case A (sand) and Case B (soil). The optimal mixing ratio of Case A was sand (58.4%), ferronickel slag fine powder (21.6%), cement (1.8%), and water (18.2%). In the case of B, the optimal mixing ratio was determined to be soil (53.0%), ferronickel slag fine powder (20.0%), cement (1.7%), and water (25.3%). The uniaxial compressive strength of case A, which is a mixture of ordinary sand and ferronickel slag powder, was relatively larger than that of case B using soil. In addition, the strength of the specimen increased with increasing curing time. The uniaxial compressive strength tended to increase with increasing curing time. In addition, the unconfined compression strength of the fluid backfill material using common sand as the main material was relatively larger than that of the mixed material using soil as the main material. In case A, the uniaxial compressive strength ranged from 0.17-0.33 MPa, 0.21-0.39 MPa, and 0.19-0.40 MPa, respectively, at curing times of 7, 14, and 28 days. From the experimental results, it was concluded that the ratio of FNS powder and cement mixture was the most appropriate for Case A3. Case B, which used soil as the main material, showed a similar tendency to Case A. As a result of the dissolution test for evaluating the environmental harm of the FNS fine powder, there was no dissolution of substances harmful to the environment.

Properties of Alkali-activated Slag-Red Mud Soil Pavement Using Recycled Aggregate (순환골재를 사용한 알칼리활성화 슬래그-레드머드 흙포장재의 특성)

  • Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, moisture absorption coefficient and efflorescence of alkali-activated slag-red mud soil pavement according to the recycling fine aggregate content. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the recycled fine aggregate content increased.

The Experimental Study on Engineering Properties of Fiber - Reinforced Soil (섬유혼합 보강토의 공학적 특성에 관한 실험연구)

  • 조덕삼;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • The purpose of this study is to investigate the effects of fiber on engineering properties of Fiber-Reinforced Soil. Engineering properties of soil reinforced with discrete randomly oriented inclusion depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. in this paper, the influence of fiber shape, fiber length, fiber diameter, fiber content, cement content and curing duration on engineering characteristics(compaction, shear & permeability) were evaluated for typical soils produced from construction works through uniaxial compression tests and triaxial compression tests. From the experimental results, it was also investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils and tested mono-filament fibers.

  • PDF

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

Characteristics of Organic Polymer Soil Pavement Curing Condition (양생조건에 따른 유기계 폴리머 흙 포장의 특성)

  • Hwang, Sungpil;Jeoung, Jaehyeung;Lee, Yongsoo;Ryu, Sanghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.35-42
    • /
    • 2014
  • The efforts to reduce carbon emission have been made in many aspects and in road, the study to develop the construction method which will replace asphalt and cement is also underway. But given the low cost and high performance offered by cement, among many solidification agents, it's difficult to seek the competent alternative. Polymeric material has been used in various ways for its advantages including lightweight and easy process for complex function and generates less carbon emission, and thus it would possibly be efficient if it replaces soil pavement using cement. This study, using three different types of organic polymeric solidification agents with different solidification principle, is intended to identify the difference in strength depending on curing method, natural dry or oven dry. Applicability of organic polymeric solidification agents to walkway and bike lane was investigated and as a result of unconfined strength test, all of them satisfied the minimum strength requirements of bike lane. Furthermore, strength characteristics of soil pavement depending on variation of water content was evaluated to identify the relationship, thereby appropriate curing method using organic polymeric solidification agent is proposed.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Effects of the Finite Ground Impedance on the Excess Attenuation of Noise (지표면 임피던스에 의한 소음의 초과감쇠에 관한 연구)

  • Kim, Dong-Il;Kang, Byoung-Yong;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.5-14
    • /
    • 1994
  • In this study, the ground impedance is measured using the standing wave method in a free field on the grass, the soil, and the ground covered with asphalt and cement. And the excess attenuation of sound is investigated. Results are obtained in the frequency range between 300Hz and 1000Hz. There are very good agreements between the results of the measured ground impedance and the prediction of Delanyand Bazley. The ground impedance is increased in order the grass, the soil, the asphalt and the cement road, decreased with frequency for each the ground. The excess attenuation of sound is mainly determined by the ground impedance. The experimental results of the excess attenuation over the different types and the microphone heights are compared with the theoretical values.

  • PDF

Behavior of cement-based permeation grouting in cohesionless soil considering clogging phenomena (폐색효과를 고려한 사질토의 시멘트 침투 그라우팅 거동 특성)

  • Seo, Jong-Woo;Lee, In-Mo;Kim, Byung-Kyu;Kwon, Young-Sam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • The behavior of cement-based permeation grouting is divided into three different groups depending on the grain size distribution of the soils: (1) zone of cement-based permeation grouting not feasible; (2) zone of cement-based permeation grouting feasible; and (3) zone in which an accelerating agent should be added to limit the penetration depth. In the cement-based permeation grouting feasible zone, the concept of a representative pore radius was proposed. The ratios of the representative pore radius to the mean pore radius were obtained by performing laboratory test and comparing with clogging theory; these values were in the range of 1.07 and 1.35 depending on the grain size distribution of the soils. In addition, a functional relationship between the lumped parameter (${\theta}$), the representative pore radius and the w/c ratio were derived by comparing and matching experimental results with predictions from theory. In the zone in which the accelerating agent should be added, the controlling process of gel time to limit the penetration depth was experimentally verified. The test results matched well with those obtained from theory utilizing the developed grout penetration program on condition that the viscosity increasing tendency of grout suspension with time is properly taken into account.