• Title/Summary/Keyword: 휨성능 평가

Search Result 633, Processing Time 0.028 seconds

Flexural Capacity of Concrete Beam Strengthened with Near-Surface Mounted Carbon Fiber Reinforced Polymer (탄소섬유 보강재로 표면매립에 의해 보강된 철근 콘크리트 보의 휨 보강성능)

  • Oh, Hong Seob;Sim, Jong Sung;Ju, Min Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.84-92
    • /
    • 2008
  • This study is to investigate the flexural performance of Near Surface Mounted (NSM) strengthening method using Fiber reinforced Polymer (FRP) materials to concrete structures. For this study, the inverse-shaped trapezoid CFRP composite material which has been registered as New Excellent Technology (NET) 351 was adopted to the concrete structure. In this study, two types of the CFRP types were considered; Type A ($15{\times}13{\times}6mm$) and Type B ($4{\times}3{\times}10mm$) with different strengthening ratio. In the result of the test, it was proved that NSM strengthened specimens had more flexural performance of 20-100% than that of the unstrengthened specimen. With this test result, the structural efficiency was investigated based on the coefficient of ductility and coefficient of crack resistance.

Mechanical Performance of Slurry Infiltrated High Performance Fiber Reinforced Cementitious Composite (슬러리 충전 고성능 섬유 보강 시멘트 복합체의 역학적 성능)

  • Kim, Hyun Wook;Lee, Chang Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2017
  • This research investigated the mechanical performance of slurry infiltrated high performance fiber reinforced cementitious composite (SI-HPFRCC) with high volume blast furnace slag powder. Hooked-end steel fibers (volume fraction of 6.4%) were used for the fabrication of SI-HPFRCC. A series of mechanical performance test was conducted including strength and toughness of SI-HPFRCC in compressive and flexural mode at four different ages. Compressive and flexural strength tests of the slurry matrix at the same ages were also conducted in order to evaluate fiber reinforcing effect on the mechanical performance. The flexural response of SI-HPFRCC shows an increasing brittleness with age. The compressive response also shows an increasing brittleness with age but the degree of brittleness is much lower than the flexural case. In terms of strength, SI-HPFRCC shows about 140~190% of compressive strength improvement and 440~500% flexural strength improvement comparing to the slurry matrix.

An Experimantal Study on the Flexible Capacity of New Shape Flat Deck Plate(ACE-DECK) for Using Composite Slabs Systems. (신형상의 합성용 평데크플래이트(ACE-DECk)의 휨성능에 대한 실험적 연구)

  • Oh, Sang-Hoon;Jang, In-wha;Bae, Kyu-woong;Heo, Byung-wook;Yang, Myung-sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.265-277
    • /
    • 2001
  • This paper present a study on the flexural behavior of composite slabs using the flat-type profiled(ACE-DECK) steel deck plate which are developed recently. Forty eight composite slabs with different thickness, span, shear span and deck profile were tested to evaluate the flexural capacity and compared to the existing traperzodial deck profiles (KEM, ALPHA-DECK) According to the experiment results, flat-type profiled steel deck plate indicates more excellent capacity than existing traperzodial deck profiles in strength, stiffness, and ductility. The equation proposed by ASCE code for the effective moment of inertia are more acceptable than the equation proposed by ACI code. Thus, in this paper, test results are summarized by strength, stiffness, and deformation capacity for the specimens.

  • PDF

Economic Analysis of Reinforced Concrete Bridges Considering Performance Evalution (성능평가를 고려한 철근콘크리트교의 경제성 분석)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Recently, it is really concerned about corrosion and aging of reinforced concrete bridges. Corrosional steel reinforcing in concrete affects not only safety of bridges structure but also bending strength of reinforced concrete's member. Rate of corrosion, characteristic of bending strength, and economical evaluation aren't clear in reinforced concrete, considering performance evaluation. The purpose of study is as follows. It studies about ability of resistance's strength and cost of life cycle according to reduction of steel reinforcing's corrosion. Moreover, it shows calculating formula of bending strength with corrosion of current rate and exactly evaluates about the rest life at corrosional reinforced concrete bridges.

Evaluation of Fundamental UHPC Properties according to shape of steel fiber (강섬유 형상별 초고성능 콘크리트 기초 물성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kang, Hyun-Jin;Kim, Suug-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.533-534
    • /
    • 2009
  • This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Performance of GFRP, CFRP and AFRP Sheet Reinforced Concrete under Impact Loads (GFRP 및 CFRP, AFRP sheet로 보강한 콘크리트의 충격 저항 성능)

  • Min, Kyung-Hwan;Lee, Seul-Kee;Cho, Seong-Hun;Yoon, Young-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • 본 연구에서는 정하중 및 충격하중 하에서 FRP(fiber reinforced polymer) sheet의 보강 성능을 평가하기 위해 섬유와 레진의 종류, sheet 종류, 보강 방법에 따른 휨 실험을 실시하였다. 이를 위해 GFRP와 CFRP, AFRP sheets로 보강된 $100{\times}100{\times}400mm$ 각주형 콘크리트 공시체의 하면 보강, 중앙 U형 스트립, 그라고 이 둘을 동시에 보강한 시험체를 제작하였고, 정하중 휨 실험과 낙하식 충격하중 실험을 실시하였다. 정하중 실험에서 중앙부 U형 스트립으로 보강한 시험체는 섬유의 방향과 균열의 진전 방향이 일치하여 보강효과가 거의 없었지만 CFRP와 AFRP로 하면 및 이중 보강한 시험체는 높은 휨성능을 보였다. 반면 충격하중 실험에서는 중앙부 U형 스트립 보강이 다소 성능을 향상 시켰고, 하면 및 이중 보강한 시험체는 큰 변형과 높은 에너지 소산 능력을 보였다.

  • PDF

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF