• Title/Summary/Keyword: 휨부재

Search Result 687, Processing Time 0.027 seconds

Physical Properties of Porous Concrete Using Admixtures (혼화재를 혼입한 투수콘크리트의 물리적 특성)

  • 채창우
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.257-265
    • /
    • 2002
  • Porous concrete has good permeability sine it contains about 10∼20 % of voids, had has been introduced to korea in early 1980's. It, however, has problems such as a lack of optimized mixture, low strength and durability, and etc. It is thus Interesting to manufacture high-performance porous concrete satisfying the mechanical characteristics to be supplied In practical construction. The results of this study were as follows : the compressive strength was 132∼221 kgf/$\textrm{cm}^2$, the splitting tensile strength was 15∼25 kgf/$\textrm{cm}^2$, the flexural strength was 36∼54 kgf/$\textrm{cm}^2$, and the coefficient permeability was 1.05${\times}$10$\^$-1/ ∼ 9.20${\times}$10$\^$-2/ cm/sec. In order to change the maximum size of aggregate, It is believed that other mixtures should be studied further.

Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method (단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석)

  • Sung Won-Jin;Kim Jeong-Hyeon;Lee Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.155-162
    • /
    • 2004
  • An analytical method to predict the time dependent flexural behavior of composite girder is presented based on sectional analysis. The time dependent constitutive relation accounting for the early-age concrete properties including maturing of elastic modulus, creep and shrinkage is derived in an incremental format by the first order Taylor series expansion. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girder which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The calculated results are compared with those by finite element analysis results. Close agreement is observed between the two approaches.

Experiments of the Lateral Loading Capacity of Exterior Joints of Non-seismically Designed RC Frames in Korea (비내진설계된 우리나라 RC 외부 접합부의 횡저항 능력에 관한 실험)

  • Lee, Young-Wook;Park, Hyeong-Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • To investigate the cyclic characteristics of exterior joints in RC frame buildings which are typically used after 1988, 70% scaled T-shaped beam-column subassemblies were designed and tested with a displacement control that is composed of 9 steps, until 3.5% story drift was reached. Axial forces are applied to columns during the experiment to simulate a real situation. The results show that the non-seismic detailed specimens failed before reaching 0.85% story drift, and their strengths are less than 0.85 times the nominal flexural strength which beam or columns should reach. The relationship of principal stress and story drift of exterior joints is similar to the one that Priestly proposed.

Stress History of a Bridge Estimated from Statistical Analysis of Traffic Bow (교통류의 통계적 해석으로부터 추정한 교량의 응력이력)

  • Yong, Hwan Sun;Choi, Kang Hee;Choi, Sung Kweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • The stress history of a bridge is different depending on the characteristic of traffic flow. Because the flow is varied with vehicle type, weight and headway time etc., statistical analysis in bridges is necessary to estimate the history by traffic flow. By applying the statistical analyses in fracture mechanics, the remaining service life of the structure can be estimated. In this paper, 1)the statistical analysis of vehicle type, weight and headway time etc. to analysis randomness of traffic flow, 2)measuring and analysis of stress history of a real bridge, 3)reappearance of stress history by Monte-Carlo Simulation using constitution ratio of vehicle type, weight and headway time as probabilitic variable, 4)comparision of the calculated and modelled stress history, 5)calculation of reduction factor, 6)comparision of frequency of stress range depending on span length etc. were performed. From the results, the basic modelled stress history which is necessary for the method of estimation of the remaining service life of the structure could be suggested.

  • PDF

Geometrically Non linear Analysis of Space Frames Including Shear Deformation Effects (전단변형(剪斷變形)을 고려(考慮)한 공간(空間) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線形) 해석(解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.39-49
    • /
    • 1993
  • In order to present the geometrically nonlinear F.E. formulation of space frames, two beam/column elements including the effects of transverse shear deformation and bending stretching coupling are developed. In the case of the first element (Finite segment method), the tangent stiffness matrices are derived by directly integrating the equilibrium equations, whereas in the case of the second element (Finite element method) elastic and geometric stiffness matrices are calculated by using the hermitian polynomials including shear deformation effect as the shape function. Both elements possess the usual twelve degrees of freedom. Also, the bowing function including shear deformation effects is obtained in order to account for the effect of shortening of member chord length due to the bending and torsional behavior. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

A study on the effect of ground vibration induced by vibrohammer and RCD on adjacent subway tunnel (바이브로 해머 및 RCD 공법 적용시 기존터널에 미치는 진동영향해석)

  • Huh, Young;Nam, Kee-Chun;Kim, Tae-Hyung;Bang, Jin-Ho;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • This paper presents the effect of ground vibration induced by vibrohammer and RCD on adjancent subway tunnel performance using FDM program. Firstly, the stability criteria for structures near vibration source were proposed according to existing data, then peak particle velocity around tunnel was estimated based on detailed information of vibrohammer and existing formula for dynamic loads through numerical analysis. The peak particle velocity induced by RCD bit rotation was also estimated using surveyed data and formula. Consequently, displacement and stress responses were obtained at crown, shoulder and spring line and compared with the criteria to check stability of tunnel.

  • PDF

An Improved Stability Design of Plane Frames using System Buckling and Second-order Elastic Analysis (탄성좌굴 고유치 및 2차 탄성해석법을 이용한 평면강절프레임의 개선된 좌굴설계법)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2005
  • An improved stability design method for beam-columns of plane frames is proposed based on system buckling analysis and second-order elastic analysis. For this, the tangent stiffness matrix of beam-column elements is first derived using stability functions and a procedure for evaluating effective buckling lengths is reviewed using elastic system buckling analysis. And then the second-order analysis procedure is presented considering $P-\Delta$ effects and is compared with the closed-form solution through numerical examples. Design examples showing the validity of the proposed method we presented and their numerical results are compared with those obtained from the conventional stability design methods. Finally some useful conclusions are drawn.

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

Earthquake Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.25-34
    • /
    • 2003
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, estimation of energy dissipation capacity of RC structures depends on empirical equations which are not sufficiently accurate, On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls was developed. In determination of earthquake load, the proposed design method can address variations of energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement, The proposed design method was compared with the current performance-based design methods. The applicability of the proposed method was discussed.

Structural Behavior of Beam-to-Column Connections of Rectangular CFT Structures having Different Diaphragm Opening (콘크리트충전 각형강관구조의 다이아프램 개구부 형상에 따른 기둥-보 접합부 구조적 거동)

  • Kim, Ki Hoon;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • The steel tube of Concrete-Filled Tube(CFT) confines the concrete and the concrete restrains the buckling of the tube, The objective of this study is to investigate the influences of the opening shape of the through diaphragm in case of the rectangular CFT column-to-beam connection through the structural experiment. The experiment results are compared with analysis results obtained by using the FEM program. These results are shown that strength of the rectangular CFT column-to-beam connection have similar structural performance regardless of the opening shape if opening areas of the through diaphragm are same. Also in case the connection area/shape of the through diaphragm and the flange of H-beam are similar, it was ascertained that the bending stress occurred at the beam can be transferred to the column through the diaphragm.