• Title/Summary/Keyword: 횡방향 응력

Search Result 191, Processing Time 0.022 seconds

Nonlinear Analysis of Compressive Flange Based on Folded Plate Theory (Folded Plate Theory에 의한 압축플랜지의 비선형 해석)

  • Jung, Soo-Hyung;Shim, Jae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.169-178
    • /
    • 2008
  • Compressive flanges of steel box girder is designed based on the ultimate strength behavior of sub-panel which is enclosed with longitudinal stiffeners and transverse stiffeners on appropriate safety factor. However, it is rational that the ultimate strength is calculated considering the various factors such as number and stiffness of longitudinal stiffener, spacing of transverse stiffener, initial deformation and residual stress distribution. In this study, an analysis program based on Folded Plate theory is developed considering the geometric effects and the material nonlinearity. The analysis program is applicated to the steel box girder bridges which is really constructed in domestic.

Development of Mechanical Test Techniques for Irradiated Zircaloy Cladding in Hot Cell (조사 지르칼로이 피복관의 기계적 특성시험 기술 개발)

  • 김도식;홍권표;주용선;안상복;송웅섭;유병옥;김기하
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.213-213
    • /
    • 2003
  • 고온 및 고압의 가혹한 방사선 분위기에서 사용되는 핵연료 피복관은 중성자 조사 및 수소화합물의 생성 등으로 인하여 기계적 성질이 저하된다. 따라서 조사된 핵연료 피복관의 손상기준 확립과 안전성 해석을 위해서는 연성 및 강도 등 기계적 특성을 정확히 이해하여야 할 필요가 있다. 핵연료 피복관의 종 및 횡 방향 인장특성 평가를 위하여 개발된 기존의 다양한 시험법들을 비교하고, 핫셀시험에 적합한 인장시험법을 개발하였다. 피복관의 종방향 인장시편은 튜브시편 또는 게이지부 내에서 균일한 변형률 분포를 얻도록 설계된 도그본 튜브시편(그림 1)을 사용한다. 피복관의 횡방향 인장시험에 사용되는 링시편(그림 2)은 게이지부 내에서 균일한 단축 원환변형율 분포 또는 평면변형율 조건을 나타내도록 설계한다. 연소 또는 조사된 피복관으로부터 시편을 제작하기 위해서는 핫셀 내에서 작업 이 가능한 방전가공기(그림 3)를 사용한다. 피복관의 종방향 인장시험용그립(grip)은 핀-부하형이며, 횡방향 인장시험의 경우는 시험 동안 시편의 곡률이 일정하게 유지 되도록 그립의 형상 및 치수를 결정한다(그림 4). 피복관의 종 및 횡방향 강도와 변형 등 기계적 특성을 평가하기 위한 응력-변형율 곡선은 시험기의 복합 강성(K)을 고려하여 결정한다. 이상과 같이 검토된 인장시험법은 피복관의 안전성 해석(safety analysis)과 관련 규정(regulatory)에서 사용되는 피복관 손상기준(fuel damage criteria)의 개선에 필수적인 자료를 제공한다.

  • PDF

Calculation of Stress Intensity Factor in a Rotor with a Breathing Crack (개폐균열을 갖는 회전체에서의 응력확대계수 계산)

  • 전오성;이종원;엄윤용;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1417-1425
    • /
    • 1991
  • 본 연구에서는 파괴역학적 개념을 도입하여 수평 회전체에 존재하는 횡방향 개폐균열의 모형을 설명하고 균열거동을 분석하였으며, 균열의 깊이, 회전속도 및 회 전방향에 따른 균열선단에서의 응력확대 계수를 계산하고 그 특성을 분석하였다.

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

Behavior of concrete cylinders confined by jacketing with lateral confining stress (횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동)

  • Cho, Sung-Chul;Choi, Eun-Soo;Chung, Young-Soo;Cho, Baik-Soon;Choi, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.157-160
    • /
    • 2008
  • The confined concrete subjected multi-axil stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effect of concrete, and now are studying in many fields. Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under loading. This study introduces a new method to retrofit RC bridge columns with lap splice which do not have enough ductility during an earthquake. The new method use mechanical external pressure and steel plates around RC columns. The jacketing built following the new method shows good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jacket shows larger compressive strength, however, the ductility at failure depends on the welding quality of steel jackets. In this study, The effect of the new method is verified through comparing the results of the compressive tests and analysis results.

  • PDF

3-D Numerical Simulation of Open-Channel Flows over Smooth-Rough Bed Strips (매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름의 3차원 수치모의)

  • Choi, Sung-Uk;Park, Moonhyeong;Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.573-581
    • /
    • 2006
  • This paper presents a turbulence modeling of the open-channel flows over smooth-rough bed strips. A Reynolds stress model is used for the turbulence closure. The simulated mean flow and turbulence structures are compared with the previously reported experimental data. Comparisons reveal that the developed Reynolds stress model successfully predicts the mean flow and turbulence structures of open-channel flows over smooth-rough bed strips. The computed flow vectors show cellular secondary currents, of which the upflow occurs over the smooth bed strip and the downflow over the rough bed strip. It is found that the cellular secondary currents affect the mean flow and turbulence structure. A budget analysis of the streamwise vorticity equation is also carried out to investigate the mechanism by which the secondary currents are generated.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Numerical Analysis off-Shape Cracking in Jointed Concrete Pavements (줄눈콘크리트 포장의 T형 균열 발생 원인 수치 해석)

  • Yun, Dong-Ju;Seo, Young-Guk;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • This study was conducted to investigate the causes that induce the T-shape cracks at the joints in the jointed concrete pavements(JCPs). The finite element models of JCP including dowel bars were developed and the stress distribution in the slab was investigated under environmental loads. To investigate the effect of dowel bars on the transverse stresses at the joints that induce the T-shape cracks, the slab curling behavior was analyzed with and without dowel bars. In addition, the stress concentration was investigated when the dowel bar was not installed at the mid-depth of the slab. The results of this study showed that the transverse stresses were not affected by the dowel bars if the dowel bars were installed at the mid-depth of the slab. However, if the dowel bars were not installed at the mid-depth, the transverse stresses were concentrated at the dowel bar locations when the slab curled. The stress concentration was dependent on the contact characteristics between the dowel bar and concrete, and was significantly large when the dowel bar not installed at the mid-depth was located far from the edge of the slab. Therefore, to mitigate T-shape cracking in JCP, dowel bars should be very carefully installed and leveled at the proper locations.

  • PDF

Field Evaluation of Traffic Wandering Effect on Asphalt Pavement Responses (차량의 횡방향 주행이격에 의한 아스팔트 콘크리트 포장의 응답특성 분석)

  • Seo, Youngguk;Kwon, Soon-Min;Lee, Jae-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.453-459
    • /
    • 2006
  • This paper presents an experimental evaluation of wandering effect on asphalt concrete pavement responses. A laser-based wandering system has been developed and its performance is verified under various field conditions. The portable wandering system composed of two laser sensors with Position Sensitive Devices can allow one to measure the distance between laser sensors and tire edges of moving vehicle. Therefore, lateral position of each wheel on the pavement can be determined in a real time manner. Pavement responses due to different loading paths are investigated using a roll over test which is carried out on one of asphalt surfaced pavements in the Korea Highway Corporation test road. The pavement section (A5) consists of 5 cm thick surface course; 7 cm intermediate course; and 18 mm base course, and is heavily instrumented with strain gauges, vertical soil pressure cells and thermo-couples. From the center of wheel paths, seven equally-spaced lateral loading paths are carefully selected over an 140 cm wandering zone. Test results show that lateral horizontal strains in both surface and intermediate courses are mostly compressive right under the loading path and tensile strains start to develop as the loading offset becomes 40 cm from the wheel path. The development of the vertical stresses in the top layers of subbase and anti-frost is found to be minimal once the loading offset becomes 50 cm.