• Title/Summary/Keyword: 회피거리

Search Result 236, Processing Time 0.022 seconds

Development of a New Pedestrian Avoidance Algorithm considering a Social Distance for Social Robots (소셜로봇을 위한 사회적 거리를 고려한 새로운 보행자 회피 알고리즘 개발)

  • Yoo, Jooyoung;Kim, Daewon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.734-741
    • /
    • 2020
  • This article proposes a new pedestrian avoidance algorithm for social robots that coexist and communicate with humans and do not induce stress caused by invasion of psychological safety distance(Social Distance). To redefine the pedestrian model, pedestrians are clustered according to the pedestrian's gait characteristics(straightness, speed) and a social distance is defined for each pedestrian cluster. After modeling pedestrians(obstacles) with the social distances, integrated navigation algorithm is completed by applying the newly defined pedestrian model to commercial obstacle avoidance and path planning algorithms. To show the effectiveness of the proposed algorithm, two commercial obstacle avoidance & path planning algorithms(the Dynamic Window Approach (DWA) algorithm and the Timed Elastic Bands (TEB) algorithm) are used. Four cases were experimented in applying and non-applying the new pedestrian model, respectively. Simulation results show that the proposed algorithm can significantly reduce the stress index of pedestrians without loss of traveling time.

Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm (개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적)

  • Park Jin-Hyun;Park Gi-Hyung;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.782-791
    • /
    • 2005
  • In this paper, path planning and tracking problems are mentioned to guarantee efficient and safe navigation of autonomous mobile robots. We focus on the path planning and also deal with the path tracking and obstacle avoidance. We improved the conventional distance transform (DT) algorithm for the path planning. Using the improved DT algorithm, we obtain paths with shorter distances compared to the conventional DT algorithm. In the stage of the Path tracking, we employ the fuzzy logic controller to conduct the path tracking behavior and obstacle avoidance behavior. Through computer simulation studies, we show the effectiveness of the Nosed navigational algorithm for autonomous mobile robots.

Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm (개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적)

  • Park, Jin-Hyun;Park, Gi-Hyung;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.295-299
    • /
    • 2005
  • In this paper, path planning and tracking problems are mentioned to guarantee efficient and safe navigation of autonomous mobile robots. We focus on the path planning and also deal with the path tracking and obstacle avoidance. We improved the conventional distance transform (DT) algorithm for the path planning. Using the improved DT algorithm, we obtain paths with shorter distances compared to the conventional DT algorithm. In the stage of the path tracking, we employ the fuzzy logic controller to conduct the path tracking behavior and obstacle avoidance behavior. Through computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

  • PDF

Measurement of Multi Conflict Avoidance for Free flight Efficiency (자유비행 다중 충돌회피 효율성 측정 연구)

  • Lee, Dae-Yong;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In this paper, study the substantial issues which occurs upon free flight environment by performing separation assurance under multiple conflict(over 3 Aircraft), recovery en route under the terms of time constrains and fixed way point after the conflict avoidance, correlations between conflict detection distance and separation assurance by utilizing Autonomous flight algorithm. Result of this experiment demonstrates that the extension of detection distance is advantageous to solution of separation assurance and enhancing of flight efficiency, choose to maneuver by applying time constrain terms and fixed way point according to the situation of conflict prediction in case of recovery maneuver after the conflict avoidance. And separation assurance can be solved by applying 2 degrees or more of bank angle. When choosing the optimal bank angle could be drastically improved flight efficiency.

A Study on the Criteria for Collision Avoidance of Naval Ships for Obstacles in Constant Bearing, Decreasing Range (CBDR) (방위끌림이 없는 장애물에 대한 함정의 충돌회피 기준에 관한 연구)

  • Ha, Jeong-soo;Jeong, Yeon-hwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.377-383
    • /
    • 2019
  • Naval ships that are navigating always have the possibility of colliding, but there is no clear maneuvering procedure for collision avoidance, and there is a tendency to depend entirely on the intuitive judgment of the Officer Of Watch (OOW). In this study, we conducted a questionnaire survey when and how to avoid collision for the OOW in a Constant Bearing, Decreasing Range (CBDR) situation wherein the naval ships encountered obstacles. Using the results of the questionnaire survey, we analyzed the CBDR situation of encountering obstacles, and how to avoid collision in day/night. The most difficult to maneuver areas were Pyeongtaek, Mokpo, and occurred mainly in narrow channels. The frequency appeared on average about once every four hours, and there were more of a large number of ships encountering situations than the 1:1 situation. The method of check of collision course confirmation was more reliable with the eye confirmation results, and priority was given to distance at closest point of approach (DCPA) and time at closest point of approach (TCPA). There was not a difference in DCPA between the give-way ship and stand-on ship, but a difference between day and night. Also, most navigators prefer to use maneuvering & shifting when avoiding collisions, and steering is 10-15°, shifting ±5knots, and the drift course was direction added stern of the obstacles to the direction of it. These results will facilitate in providing officers with standards for collision avoidance, and also apply to the development of AI and big data based unmanned ship collision avoidance algorithms.

Ship Collision Avoidance Support Model in Close Quarters Situation(I) (근접상황 선박충돌회피지원모델에 관한 연구(I))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.89-94
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems has proceeded actively. However the frequency of ship collision accidents didn't decreased. If there is collision risk in close quarters situation none the less manouvering ship for collision avoidance according to the system, only use of TCPA and DCPA as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefor it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as foundation study of supporting collision avoidance manoeuvring for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis of collision accidents for effective getting rid of the causes.

  • PDF

Ship Collision Avoidance Support Model in Close Quarters Situation( I ) (근접상황 선박충돌회피지원모델에 관한 연구( I ))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.827-832
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems have proceeded actively. However the rate of ship collision accidents hasn't decreased yet. If there is collision risk in close quarters situation in spite of maneuvering ship for collision avoidance according to the system, only use of TCP A and DCP A as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefore it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as a fundamental study of supporting collision avoidance maneuvering for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis qf collision accidents to effectively get rid of the causes.

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

The Obstacle Size Prediction Method Based on YOLO and IR Sensor for Avoiding Obstacle Collision of Small UAVs (소형 UAV의 장애물 충돌 회피를 위한 YOLO 및 IR 센서 기반 장애물 크기 예측 방법)

  • Uicheon Lee;Jongwon Lee;Euijin Choi;Seonah Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.16-26
    • /
    • 2023
  • With the growing demand for unmanned aerial vehicles (UAVs), various collision avoidance methods have been proposed, mainly using LiDAR and stereo cameras. However, it is difficult to apply these sensors to small UAVs due to heavy weight or lack of space. The recently proposed methods use a combination of object recognition models and distance sensors, but they lack information on the obstacle size. This disadvantage makes distance determination and obstacle coordination complicated in an early-stage collision avoidance. We propose a method for estimating obstacle sizes using a monocular camera-YOLO and infrared sensor. Our experimental results confirmed that the accuracy was 86.39% within the distance of 40 cm. In addition, the proposed method was applied to a small UAV to confirm whether it was possible to avoid obstacle collisions.

A Study on the Initial Action of Navigators to Avoid Risk of Collision at Sea (충돌위험 회피를 위한 선박 운항자의 초동조치에 관한 연구)

  • Lee, Yun-Suk;Park, Jun-Mo;Lee, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • The Convention on the international regulations for preventing collisions at sea, 1972(COLREGs) defines the collision avoidance principles and various navigation rules for the prevention of collision at sea. In particular, the initial responses to avoid risk of collision are mainly decided by navigation officer's experience and subjective judgement. However, collision accidents could be effectively prevented if the minimum criteria of quantitative initial response are suggested to the junior officers and the cadets who have insufficient sea experience and navigation competency. This study reviewed the COLREGs terms related to the initial response and the existing papers concerned with risk assessment model. A questionnaire survey is also carried out for safe passing distance, degrees of alternating course and initial response distance to avoid collision in accordance with various encounter situations. Base on these results, we propose the proper minimum safe passing distance between the vessels, the initial response distance and required turning angles for alternation in each encounter situations. The suggested criteria of initial response will contribute to the prevention of collision at sea as well as the improvement of gradual navigation technology.