DOI QR코드

DOI QR Code

Development of a New Pedestrian Avoidance Algorithm considering a Social Distance for Social Robots

소셜로봇을 위한 사회적 거리를 고려한 새로운 보행자 회피 알고리즘 개발

  • Yoo, Jooyoung (Data Technology, Dept. of Software Convergence, College of ICT Convergence, Myongji University) ;
  • Kim, Daewon (Data Technology, Dept. of Software Convergence, College of ICT Convergence, Myongji University)
  • 유주영 (명지대학교 ICT융합대학 융합소프트웨어학부 데이터테크놀로지전공) ;
  • 김대원 (명지대학교 ICT융합대학 융합소프트웨어학부 데이터테크놀로지전공)
  • Received : 2020.03.30
  • Accepted : 2020.07.30
  • Published : 2020.09.30

Abstract

This article proposes a new pedestrian avoidance algorithm for social robots that coexist and communicate with humans and do not induce stress caused by invasion of psychological safety distance(Social Distance). To redefine the pedestrian model, pedestrians are clustered according to the pedestrian's gait characteristics(straightness, speed) and a social distance is defined for each pedestrian cluster. After modeling pedestrians(obstacles) with the social distances, integrated navigation algorithm is completed by applying the newly defined pedestrian model to commercial obstacle avoidance and path planning algorithms. To show the effectiveness of the proposed algorithm, two commercial obstacle avoidance & path planning algorithms(the Dynamic Window Approach (DWA) algorithm and the Timed Elastic Bands (TEB) algorithm) are used. Four cases were experimented in applying and non-applying the new pedestrian model, respectively. Simulation results show that the proposed algorithm can significantly reduce the stress index of pedestrians without loss of traveling time.

본 논문은 인간과 공존하고 커뮤니케이션하며, 인간에게 심리적 안전거리(사회적 거리) 침해에 따른 스트레스를 유발하지 않는 소셜로봇을 위한 새로운 보행자 회피 알고리즘을 제안한다. 보행자 모델을 새롭게 정의하기 위해 보행자의 걸음걸이 특성(직진성, 속도)에 따라 보행자를 클러스터링하며 보행자 클러스터별 사회적 거리를 정의한다. 정의된 사회적 거리를 포함하도록 보행자(장애물) 모델링을 하고, 새롭게 정의된 보행자 모델에 상용화된 장애물 회피, 경로계획 알고리즘을 적용해 통합된 주행 알고리즘을 완성한다. 새로운 알고리즘의 효과를 검증하기 위해, 상용화된 대표적 두가지 장애물회피 경로계획 알고리즘인 DWA 알고리즘과 TEB 알고리즘을 활용한다. 본 논문의 핵심 알고리즘인 새로운 보행자 모델을 적용한 경우와 적용하지 않은 경우로 구분하여 그 효용성을 평가한다. 그 결과, 새롭게 제안된 알고리즘이 이동시간의 손실 없이 보행자의 스트레스 지수를 현격하게 줄일 수 있음을 보인다.

Keywords

References

  1. C. L. Breazeal, Designing sociable robots, A Bradford book, pp.1-60, 2002.
  2. P. Fiorini, and Z. Shiller, "Motion planning in dynamic environments using velocity obstacles" The International Journal of Robotics Research , Vol.17, No.7, pp.760-772, 1998, DOI: 10.1177/027836499801700706
  3. A, Bandura, "The self system in reciprocal determinism", American psychologist, Vol.33, No.4, pp.344-358, 1978, DOI: 10.1037/0003-066X.33.4.344
  4. E. T. Hall, R. L. Birdwhistell, B. Bock, P. Bohannan, A. R. Diebold Jr, M. Durbin, ... and W. La Barre, "Proxemics [and comments and replies]", Current anthropology, Vol.9, No.2/3, pp.83-108, 1968. https://doi.org/10.1086/200975
  5. E. T. Hall, The hidden dimension, Garden City, NY: Doubleday, Vol. 609, pp.121-129, 1966.
  6. D. P. Kennedy, J. Gläscher, J. M. Tyszka, and R. Adolphs, "Personal space regulation by the human amygdala", Nature neuroscience, Vol.12, No.10, pp.1226-1227, 2009, DOI: 10.1038/nn.2381.
  7. L. Takayama, and C. Pantofaru. "Influences on proxemic behaviors in human-robot interaction." 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.5495-5502, 2009, DOI: 10.1109/IROS.2009.5354145.
  8. G.J. Stephen, S. Kim, M. C. Lin, and D. Manocha. "Simulating heterogeneous crowd behaviors using personality trait theory." Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, pp.43-52, 2011, DOI: 10.1145/2019406.2019413.
  9. A. Sorokowska, P. Sorokowski, P.Hilpert, K. Cantarero, T. Frackowiak, ... and S. Blumen, "Preferred interpersonal distances: a global comparison" Journal of Cross-Cultural Psychology, Vol.48, No.4, pp.577-592, 2017, DOI: 10.1177/0022022117698039.
  10. G.G.Berntson, A. Bechara, H. Damasio, D.Tranel, and J.T. Cacioppo "Amygdala contribution to selective dimensions of emotion" Social cognitive and affective neuroscience, Vol.2, No.2, pp.123-129, 2007, DOI: 10.1093/scan/nsm008.
  11. D. Fox, W. Burgard, and S. Thrun. "The dynamic window approach to collision avoidance" IEEE Robotics & Automation Magazine Vol.4, No.1, pp.23-33, 1997, DOI: 10.1109/100.580977
  12. C. Rosmann, W. Feiten, T. Woesch, F. Hoffmann, and T.Bertram. "Tra- jectory modification considering dynamic constraints of autonomous robots", ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, pp.1-6, 2012.
  13. H. J. Eysenck, "Crime and personality", Medico-Legal Journal Vol.47, No.1 : pp.18-32, 1979, DOI: 10.1177/002581727904700104.
  14. S. David, "Web-scale k-means clustering", Proceedings of the 19th international conference on World wide web, pp.1177-1178, 2010.
  15. S. Ren, K. He, R. Girshick, J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks" Advances in neural information processing systems. 2015, arXiv:1506.01497.
  16. OXFORD TOWN CENTRE, https://megapixels.cc/datasets/oxford_town_centre/ (accessed Jan. 12, 2020).
  17. D. Elan, "Homography estimation" Master's Thesis of Vancouver: Univerzita Britske Kolumbie, 2009.