• 제목/요약/키워드: 회전 외팔 보

검색결과 73건 처리시간 0.024초

공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석 (Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.

회전 외팔보에서의 유한요소 연구 (A Finite Element Analysis for a Rotating Cantilever Beam)

  • 정진태;유홍희;김강성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.529-534
    • /
    • 2000
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modelling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, are derived two weak forms: one is for the chordwise motion and the other is for the flapwise motion. The weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviours of the natural frequencies are investigated for the variation of the rotating speed.

  • PDF

중력의 영향이 고려된 회전 블레이드의 동적 안정성 해석 (Dynamic Stability Analysis of a Rotating Blade Considering Gravity Effect)

  • 정강일;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1052-1057
    • /
    • 2010
  • Dynamic stability of rotating blade considering gravity effect is investigated in this paper. Equations of motion for the beam is derived by employing hybrid deformation variable method and transformed into dimensionless form. The present modeling method is verified by RecurDyn. Stability diagrams are presented to show the influence of the configuration of the beam and angular velocity on the dynamic stability by applying Floquet's theory. Since the natural frequencies are varied when the blade has rotating motion, it is found that relatively large unstable regions exist approximately 1.1 times as high as the first bending natural frequency and half of the sum of first and second bending natural frequency.

회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석 (Crack Detection of Rotating Blade using Hidden Markov Model)

  • 이승규;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

회전 외팔보의 유한요소 해석 (A Finite Element Analysis for a Rotating Cantilever Beam)

  • 정진태;유홍희;김강성
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1730-1736
    • /
    • 2001
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modeling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are (derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, two weak forms are derived: one is for the chordwise motion and the other is fur the flptwise motion. The weak farms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviors of the natural frequencies are investigated for the variation of the rotating speed.

초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석 (Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System)

  • 김민권;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

탄성지지단을 갖는 회전하는 외팔 보의 진동해석 (Vibration Analysis of Rotating Cantilever Beams with an Elastically Restrained Root)

  • 윤경재;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.689-694
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of cantilever beams with an elastically restrained root. Mass and stiffness matrices are derived explicitly by considering the elastically restrained root coupling effect between stretching and bending motion. Numerical results show that the two effects influence the vibration characteristics of rotating beams significantly. The results also present the magnitude of the elastic stiffness of the root to avoid the dynamic buckling. The method presented in this paper can be used to provide accurate predictions of the variations of natural frequencies of rotating beams with an elastically restrained root.

  • PDF

회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석 (Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section)

  • 김민권;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF